
Security in MySQL



Security in MySQL
Abstract

This is the MySQL Security Guide extract from the MySQL 5.1 Reference Manual.

Document generated on: 2009-06-02 (revision: 15165)

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. All rights reserved. U.S. Government Rights - Commercial software. Govern-
ment users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. Use is
subject to license terms. Sun, Sun Microsystems, the Sun logo, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo and
MySQL are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. UNIX is a registered trademark in the
U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. Tous droits réservés. L'utilisation est soumise aux termes du contrat de li-
cence.Sun, Sun Microsystems, le logo Sun, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo et MySQL sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: You may create a printed
copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or
edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Sun disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar me-
dium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dis-
semination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an au-
thorized representative of Sun Microsystems, Inc. Sun Microsystems, Inc. and MySQL AB reserve any and all rights to this documentation not ex-
pressly granted above.

For more information on the terms of this license, for details on how the MySQL documentation is built and produced, or if you are interested in
doing a translation, please contact the Documentation Team.

For additional licensing information, including licenses for libraries used by MySQL, see Preface, Notes, Licenses.

If you want help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other
MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versions in
variety of formats, including HTML, CHM, and PDF formats, see MySQL Documentation Library.

http://www.mysql.com/company/contact/
http://dev.mysql.com/doc/refman/5.1/en/preface.html
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc




Preface
When thinking about security within MySQL you should consider a wide range of possible topics and how they might affect the se-
curity of your MySQL server and related applications.

All of the following are issues that you should be aware of:

• Security of the installation itself. The data files, log files, and the all the application files of your installation should be protected
to ensure that they are not readable or writable by unauthorized parties. For more information, see Chapter 2, Post-Installation
Setup and Testing.

• Access control and security within the database system itself, including the users and databases granted with access to the data-
bases, views and stored programs in use within the database. For more information, see Chapter 3, The MySQL Access Privilege
System, Chapter 4, MySQL User Account Management.

• Network security of MySQL and your system. The security is related to the grants for individual users, but you may also wish
to restrict MySQL so that is only available locally, or to a limited set of hosts.

• Security of your application to ensure that SQL injections and other corruption of the data does not occur. See Chapter 1, Gen-
eral Security Issues.

• Ensure that you have adequate and appropriate backups of your database files, configuration and log files. Also be sure that you
have a recovery solution in place and test that you are able to successfully recover the information from your backups. See
Chapter 5, Backup and Recovery.

iv



Chapter 1. General Security Issues
This section describes some general security issues to be aware of and what you can do to make your MySQL installation more se-
cure against attack or misuse. For information specifically about the access control system that MySQL uses for setting up user ac-
counts and checking database access, see Chapter 3, The MySQL Access Privilege System.

For answers to some questions that are often asked about MySQL Server security issues, see MySQL 5.1 FAQ — Security.

1.1. General Security Guidelines
Anyone using MySQL on a computer connected to the Internet should read this section to avoid the most common security mis-
takes.

In discussing security, we emphasize the necessity of fully protecting the entire server host (not just the MySQL server) against all
types of applicable attacks: eavesdropping, altering, playback, and denial of service. We do not cover all aspects of availability and
fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other operations that users can at-
tempt to perform. There is also support for SSL-encrypted connections between MySQL clients and servers. Many of the concepts
discussed here are not specific to MySQL at all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines whenever possible:

• Do not ever give anyone (except MySQL root accounts) access to the user table in the mysql database! This is critical.

• Learn the MySQL access privilege system. The GRANT and REVOKE statements are used for controlling access to MySQL. Do
not grant more privileges than necessary. Never grant privileges to all hosts.

Checklist:

• Try mysql -u root. If you are able to connect successfully to the server without being asked for a password, anyone
can connect to your MySQL server as the MySQL root user with full privileges! Review the MySQL installation instruc-
tions, paying particular attention to the information about setting a root password. See Section 2.3, “Securing the Initial
MySQL Accounts”.

• Use the SHOW GRANTS statement to check which accounts have access to what. Then use the REVOKE statement to re-
move those privileges that are not necessary.

• Do not store any plain-text passwords in your database. If your computer becomes compromised, the intruder can take the full
list of passwords and use them. Instead, use MD5(), SHA1(), or some other one-way hashing function and store the hash
value.

• Do not choose passwords from dictionaries. Special programs exist to break passwords. Even passwords like “xfish98” are very
bad. Much better is “duag98” which contains the same word “fish” but typed one key to the left on a standard QWERTY key-
board. Another method is to use a password that is taken from the first characters of each word in a sentence (for example,
“Mary had a little lamb” results in a password of “Mhall”). The password is easy to remember and type, but difficult to guess
for someone who does not know the sentence.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put MySQL behind the firewall
or in a demilitarized zone (DMZ).

Checklist:

• Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306 by default. This port should not
be accessible from untrusted hosts. Another simple way to check whether or not your MySQL port is open is to try the fol-
lowing command from some remote machine, where server_host is the host name or IP number of the host on which
your MySQL server runs:

shell> telnet server_host 3306

If you get a connection and some garbage characters, the port is open, and should be closed on your firewall or router, un-
less you really have a good reason to keep it open. If telnet hangs or the connection is refused, the port is blocked, which
is how you want it to be.

• Do not trust any data entered by users of your applications. They can try to trick your code by entering special or escaped char-
acter sequences in Web forms, URLs, or whatever application you have built. Be sure that your application remains secure if a
user enters something like “; DROP DATABASE mysql;”. This is an extreme example, but large security leaks and data
loss might occur as a result of hackers using similar techniques, if you do not prepare for them.

1

http://dev.mysql.com/doc/refman/5.1/en/faqs-security.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html
http://dev.mysql.com/doc/refman/5.1/en/show-grants.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_md5
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_sha1


A common mistake is to protect only string data values. Remember to check numeric data as well. If an application generates a
query such as SELECT * FROM table WHERE ID=234 when a user enters the value 234, the user can enter the value
234 OR 1=1 to cause the application to generate the query SELECT * FROM table WHERE ID=234 OR 1=1. As a
result, the server retrieves every row in the table. This exposes every row and causes excessive server load. The simplest way to
protect from this type of attack is to use single quotes around the numeric constants: SELECT * FROM table WHERE
ID='234'. If the user enters extra information, it all becomes part of the string. In a numeric context, MySQL automatically
converts this string to a number and strips any trailing non-numeric characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be protected. This is incorrect. Even
if it is allowable to display any row in the database, you should still protect against denial of service attacks (for example, those
that are based on the technique in the preceding paragraph that causes the server to waste resources). Otherwise, your server be-
comes unresponsive to legitimate users.

Checklist:

• Try to enter single and double quote marks (“'” and “"”) in all of your Web forms. If you get any kind of MySQL error, in-
vestigate the problem right away.

• Try to modify dynamic URLs by adding %22 (“"”), %23 (“#”), and %27 (“'”) to them.

• Try to modify data types in dynamic URLs from numeric to character types using the characters shown in the previous ex-
amples. Your application should be safe against these and similar attacks.

• Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your application should remove
them before passing them to MySQL or else generate an error. Passing unchecked values to MySQL is very dangerous!

• Check the size of data before passing it to MySQL.

• Have your application connect to the database using a user name different from the one you use for administrative purposes.
Do not give your applications any access privileges they do not need.

• Many application programming interfaces provide a means of escaping special characters in data values. Properly used, this
prevents application users from entering values that cause the application to generate statements that have a different effect than
you intend:

• MySQL C API: Use the mysql_real_escape_string() API call.

• MySQL++: Use the escape and quote modifiers for query streams.

• PHP: Use the mysql_real_escape_string() function (available as of PHP 4.3.0, prior to that PHP version use
mysql_escape_string(), and prior to PHP 4.0.3, use addslashes() ). Note that only
mysql_real_escape_string() is character set-aware; the other functions can be “bypassed” when using (invalid)
multi-byte character sets. In PHP 5, you can use the mysqli extension, which supports the improved MySQL authentica-
tion protocol and passwords, as well as prepared statements with placeholders.

• Perl DBI: Use placeholders or the quote() method.

• Ruby DBI: Use placeholders or the quote() method.

• Java JDBC: Use a PreparedStatement object and placeholders.

Other programming interfaces might have similar capabilities.

• Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone who has the time and
ability to intercept it and use it for their own purposes. Instead, use an encrypted protocol such as SSL or SSH. MySQL sup-
ports internal SSL connections as of version 4.0. Another technique is to use SSH port-forwarding to create an encrypted (and
compressed) tunnel for the communication.

• Learn to use the tcpdump and strings utilities. In most cases, you can check whether MySQL data streams are unencrypted
by issuing a command like the following:

shell> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

This works under Linux and should work with small modifications under other systems.

Warning

If you do not see plaintext data, this does not always mean that the information actually is encrypted. If you need high
security, you should consult with a security expert.

General Security Issues

2

http://dev.mysql.com/doc/refman/5.1/en/mysql-real-escape-string.html


1.2. Making MySQL Secure Against Attackers
When you connect to a MySQL server, you should use a password. The password is not transmitted in clear text over the connec-
tion. Password handling during the client connection sequence was upgraded in MySQL 4.1.1 to be very secure. If you are still us-
ing pre-4.1.1-style passwords, the encryption algorithm is not as strong as the newer algorithm. With some effort, a clever attacker
who can sniff the traffic between the client and the server can crack the password. (See Section 4.6.3, “Password Hashing in
MySQL”, for a discussion of the different password handling methods.)

MySQL Enterprise
The MySQL Enterprise Monitor enforces best practices for maximizing the security of your servers. For
more information, see http://www.mysql.com/products/enterprise/advisors.html.

All other information is transferred as text, and can be read by anyone who is able to watch the connection. If the connection
between the client and the server goes through an untrusted network, and you are concerned about this, you can use the compressed
protocol to make traffic much more difficult to decipher. You can also use MySQL's internal SSL support to make the connection
even more secure. See Section 4.7, “Using SSL for Secure Connections”. Alternatively, use SSH to get an encrypted TCP/IP con-
nection between a MySQL server and a MySQL client. You can find an Open Source SSH client at http://www.openssh.org/, and a
commercial SSH client at http://www.ssh.com/.

To make a MySQL system secure, you should strongly consider the following suggestions:

• Require all MySQL accounts to have a password. A client program does not necessarily know the identity of the person running
it. It is common for client/server applications that the user can specify any user name to the client program. For example, any-
one can use the mysql program to connect as any other person simply by invoking it as mysql -u other_user
db_name if other_user has no password. If all accounts have a password, connecting using another user's account be-
comes much more difficult.

For a discussion of methods for setting passwords, see Section 4.5, “Assigning Account Passwords”.

• Never run the MySQL server as the Unix root user. This is extremely dangerous, because any user with the FILE privilege is
able to cause the server to create files as root (for example, ~root/.bashrc). To prevent this, mysqld refuses to run as
root unless that is specified explicitly using the --user=root option.

mysqld can (and should) be run as an ordinary, unprivileged user instead. You can create a separate Unix account named
mysql to make everything even more secure. Use this account only for administering MySQL. To start mysqld as a different
Unix user, add a user option that specifies the user name in the [mysqld] group of the my.cnf option file where you spe-
cify server options. For example:

[mysqld]
user=mysql

This causes the server to start as the designated user whether you start it manually or by using mysqld_safe or
mysql.server. For more details, see Section 1.5, “How to Run MySQL as a Normal User”.

Running mysqld as a Unix user other than root does not mean that you need to change the root user name in the user ta-
ble. User names for MySQL accounts have nothing to do with user names for Unix accounts.

• Do not allow the use of symlinks to tables. (This capability can be disabled with the --skip-symbolic-links option.)
This is especially important if you run mysqld as root, because anyone that has write access to the server's data directory
then could delete any file in the system! See Using Symbolic Links for Tables on Unix.

• Make sure that the only Unix user account with read or write privileges in the database directories is the account that is used for
running mysqld.

• Do not grant the PROCESS or SUPER privilege to non-administrative users. The output of mysqladmin processlist
and SHOW PROCESSLIST shows the text of any statements currently being executed, so any user who is allowed to see the
server process list might be able to see statements issued by other users such as UPDATE user SET pass-
word=PASSWORD('not_secure').

mysqld reserves an extra connection for users who have the SUPER privilege, so that a MySQL root user can log in and
check server activity even if all normal connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by changing the value of system
variables, and control replication servers.

• Do not grant the FILE privilege to non-administrative users. Any user that has this privilege can write a file anywhere in the
file system with the privileges of the mysqld daemon. To make this a bit safer, files generated with SELECT ... INTO
OUTFILE do not overwrite existing files and are writable by everyone.

General Security Issues

3

http://www.mysql.com/products/enterprise/advisors.html
http://www.openssh.org/
http://www.ssh.com/
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_user
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_symbolic-links
http://dev.mysql.com/doc/refman/5.1/en/symbolic-links.html#symbolic-links-to-tables
http://dev.mysql.com/doc/refman/5.1/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/select.html


The FILE privilege may also be used to read any file that is world-readable or accessible to the Unix user that the server runs
as. With this privilege, you can read any file into a database table. This could be abused, for example, by using LOAD DATA to
load /etc/passwd into a table, which then can be displayed with SELECT.

• If you do not trust your DNS, you should use IP numbers rather than host names in the grant tables. In any case, you should be
very careful about creating grant table entries using host name values that contain wildcards.

• If you want to restrict the number of connections allowed to a single account, you can do so by setting the
max_user_connections variable in mysqld. The GRANT statement also supports resource control options for limiting
the extent of server use allowed to an account. See GRANT Syntax.

1.3. Security-Related mysqld Options
The following mysqld options affect security:

Table 1.1. mysqld Security Option/Variable Summary

Name Cmd-
Line

Option
file

System
Var

Status
Var

Var
Scope

Dynamic

allow-suspicious-udfs Yes Yes

automatic_sp_privileges Yes Global Yes

chroot Yes Yes

des-key-file Yes Yes

local_infile Yes Global Yes

local-infile Yes Yes

- Variable: local_infile

old-passwords Yes Yes Both Yes

- Variable: old_passwords Yes Both Yes

safe-show-database Yes Yes Yes Global Yes

safe-user-create Yes Yes

secure-auth Yes Yes Global Yes

- Variable: secure_auth Yes Global Yes

secure-file-priv Yes Yes Global No

- Variable: secure_file_priv Yes Global No

skip-grant-tables Yes Yes

skip-name-resolve Yes Yes

skip-networking Yes Yes Global No

- Variable: skip_networking Yes Global No

skip-show-database Yes Yes Global No

- Variable: skip_show_database Yes Global No

• --allow-suspicious-udfs

This option controls whether user-defined functions that have only an xxx symbol for the main function can be loaded. By de-
fault, the option is off and only UDFs that have at least one auxiliary symbol can be loaded; this prevents attempts at loading
functions from shared object files other than those containing legitimate UDFs. See User-Defined Function Security Precau-
tions.

• --local-infile[={0|1}]

If you start the server with --local-infile=0, clients cannot use LOCAL in LOAD DATA statements. See Section 1.4,
“Security Issues with LOAD DATA LOCAL”.

• --old-passwords

Force the server to generate short (pre-4.1) password hashes for new passwords. This is useful for compatibility when the server

General Security Issues

4

http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_max_user_connections
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_allow-suspicious-udfs
http://dev.mysql.com/doc/refman/5.1/en/adding-udf.html#udf-security
http://dev.mysql.com/doc/refman/5.1/en/adding-udf.html#udf-security
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords


must support older client programs. See Section 4.6.3, “Password Hashing in MySQL”.

MySQL Enterprise
The MySQL Enterprise Monitor offers advice on the security implications of using this option. For subscrip-
tion information, see http://www.mysql.com/products/enterprise/advisors.html.

• --safe-show-database (OBSOLETE)

In previous versions of MySQL, this option caused the SHOW DATABASES statement to display the names of only those data-
bases for which the user had some kind of privilege. In MySQL 5.1, this option is no longer available as this is now the default
behavior, and there is a SHOW DATABASES privilege that can be used to control access to database names on a per-account
basis. See GRANT Syntax.

• --safe-user-create

If this option is enabled, a user cannot create new MySQL users by using the GRANT statement unless the user has the INSERT
privilege for the mysql.user table or any column in the table. If you want a user to have the ability to create new users that
have those privileges that the user has the right to grant, you should grant the user the following privilege:

GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';

This ensures that the user cannot change any privilege columns directly, but has to use the GRANT statement to give privileges
to other users.

• --secure-auth

Disallow authentication for accounts that have old (pre-4.1) passwords.

The mysql client also has a --secure-auth option, which prevents connections to a server if the server requires a pass-
word in old format for the client account.

• --secure-file-priv=path

This option limits the effect of the LOAD_FILE() function and the LOAD DATA and SELECT ... INTO OUTFILE state-
ments to work only with files in the specified directory.

This option was added in MySQL 5.1.17.

• --skip-grant-tables

This option causes the server not to use the privilege system at all. This gives anyone with access to the server unrestricted ac-
cess to all databases. You can cause a running server to start using the grant tables again by executing mysqladmin
flush-privileges or mysqladmin reload command from a system shell, or by issuing a MySQL FLUSH PRIV-
ILEGES statement. This option also suppresses loading of plugins and user-defined functions (UDFs).

• --skip-merge

Disable the MERGE storage engine. This option was added in MySQL 5.1.12 and removed in 5.1.14.

• --skip-name-resolve

Host names are not resolved. All Host column values in the grant tables must be IP numbers or localhost.

• --skip-networking

Do not allow TCP/IP connections over the network. All connections to mysqld must be made via Unix socket files.

• --skip-show-database

With this option, the SHOW DATABASES statement is allowed only to users who have the SHOW DATABASES privilege, and
the statement displays all database names. Without this option, SHOW DATABASES is allowed to all users, but displays each
database name only if the user has the SHOW DATABASES privilege or some privilege for the database. Note that any global
privilege is a privilege for the database.

• --ssl*

Options that begin with --ssl specify whether to allow clients to connect via SSL and indicate where to find SSL keys and
certificates. See Section 4.7.3, “SSL Command Options”.

General Security Issues

5

http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_safe-show-database
http://dev.mysql.com/doc/refman/5.1/en/show-databases.html
http://dev.mysql.com/doc/refman/5.1/en/show-databases.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_safe-user-create
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_secure-auth
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_secure-auth
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_secure-file-priv
http://dev.mysql.com/doc/refman/5.1/en/string-functions.html#function_load-file
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-grant-tables
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-name-resolve
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-networking
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-show-database
http://dev.mysql.com/doc/refman/5.1/en/show-databases.html
http://dev.mysql.com/doc/refman/5.1/en/show-databases.html


1.4. Security Issues with LOAD DATA LOCAL
The LOAD DATA statement can load a file that is located on the server host, or it can load a file that is located on the client host
when the LOCAL keyword is specified.

There are two potential security issues with supporting the LOCAL version of LOAD DATA statements:

• The transfer of the file from the client host to the server host is initiated by the MySQL server. In theory, a patched server could
be built that would tell the client program to transfer a file of the server's choosing rather than the file named by the client in the
LOAD DATA statement. Such a server could access any file on the client host to which the client user has read access.

• In a Web environment where the clients are connecting from a Web server, a user could use LOAD DATA LOCAL to read any
files that the Web server process has read access to (assuming that a user could run any command against the SQL server). In
this environment, the client with respect to the MySQL server actually is the Web server, not the remote program being run by
the user who connects to the Web server.

To deal with these problems, we changed how LOAD DATA LOCAL is handled as of MySQL 3.23.49 and MySQL 4.0.2 (4.0.13
on Windows):

• By default, all MySQL clients and libraries in binary distributions are compiled with the --enable-local-infile option,
to be compatible with MySQL 3.23.48 and before.

• If you build MySQL from source but do not invoke configure with the --enable-local-infile option, LOAD DATA
LOCAL cannot be used by any client unless it is written explicitly to invoke mysql_options(...
MYSQL_OPT_LOCAL_INFILE, 0). See mysql_options().

• You can disable all LOAD DATA LOCAL commands from the server side by starting mysqld with the -
-local-infile=0 option.

• For the mysql command-line client, enable LOAD DATA LOCAL by specifying the --local-infile[=1] option, or dis-
able it with the --local-infile=0 option. For mysqlimport, local data file loading is off by default; enable it with the
--local or -L option. In any case, successful use of a local load operation requires that the server is enabled to allow it.

• If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client] group from option files, you can
add the local-infile=1 option to that group. However, to keep this from causing problems for programs that do not un-
derstand local-infile, specify it using the loose- prefix:

[client]
loose-local-infile=1

• If LOAD DATA LOCAL is disabled, either in the server or the client, a client that attempts to issue such a statement receives
the following error message:

ERROR 1148: The used command is not allowed with this MySQL version

MySQL Enterprise
Security advisors notify subscribers to the MySQL Enterprise Monitor whenever a server is started with the
--local-infile option enabled. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

1.5. How to Run MySQL as a Normal User
On Windows, you can run the server as a Windows service using a normal user account.

On Unix, the MySQL server mysqld can be started and run by any user. However, you should avoid running the server as the
Unix root user for security reasons. To change mysqld to run as a normal unprivileged Unix user user_name, you must do the
following:

1. Stop the server if it is running (use mysqladmin shutdown).

2. Change the database directories and files so that user_name has privileges to read and write files in them (you might need to
do this as the Unix root user):

shell> chown -R user_name /path/to/mysql/datadir

General Security Issues

6

http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-options.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-options.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-options.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-description.html#option_mysql_local-infile
http://dev.mysql.com/doc/refman/5.1/en/mysql-description.html#option_mysql_local-infile
http://dev.mysql.com/doc/refman/5.1/en/mysqlimport.html#option_mysqlimport_local
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


If you do not do this, the server will not be able to access databases or tables when it runs as user_name.

If directories or files within the MySQL data directory are symbolic links, chown -R might not follow symbolic links for
you. If it does not, you will also need to follow those links and change the directories and files they point to.

3. Start the server as user user_name. Another alternative is to start mysqld as the Unix root user and use the
--user=user_name option. mysqld starts up, then switches to run as the Unix user user_name before accepting any
connections.

4. To start the server as the given user automatically at system startup time, specify the user name by adding a user option to
the [mysqld] group of the /etc/my.cnf option file or the my.cnf option file in the server's data directory. For example:

[mysqld]
user=user_name

If your Unix machine itself isn't secured, you should assign passwords to the MySQL root accounts in the grant tables. Other-
wise, any user with a login account on that machine can run the mysql client with a --user=root option and perform any oper-
ation. (It is a good idea to assign passwords to MySQL accounts in any case, but especially so when other login accounts exist on
the server host.) See Chapter 2, Post-Installation Setup and Testing.

General Security Issues

7

http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_user
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_user
http://dev.mysql.com/doc/refman/5.1/en/mysql-description.html#option_mysql_user


Chapter 2. Post-Installation Setup and Testing
After installing MySQL, there are some issues that you should address. For example, on Unix, you should initialize the data direct-
ory and create the MySQL grant tables. On all platforms, an important security concern is that the initial accounts in the grant
tables have no passwords. You should assign passwords to prevent unauthorized access to the MySQL server. Optionally, you can
create time zone tables to enable recognition of named time zones.

The following sections include post-installation procedures that are specific to Windows systems and to Unix systems. Another
section, Section 2.2.3, “Starting and Troubleshooting the MySQL Server”, applies to all platforms; it describes what to do if you
have trouble getting the server to start. Section 2.3, “Securing the Initial MySQL Accounts”, also applies to all platforms. You
should follow its instructions to make sure that you have properly protected your MySQL accounts by assigning passwords to
them.

When you are ready to create additional user accounts, you can find information on the MySQL access control system and account
management in Chapter 3, The MySQL Access Privilege System, and Chapter 4, MySQL User Account Management.

2.1. Windows Post-Installation Procedures
On Windows, the data directory and the grant tables do not have to be created. MySQL Windows distributions include the grant
tables with a set of preinitialized accounts in the mysql database under the data directory. It is unnecessary to run the
mysql_install_db script that is used on Unix. Regarding passwords, if you installed MySQL using the Windows Installation
Wizard, you may have already assigned passwords to the accounts. (See Using the MySQL Installation Wizard.) Otherwise, use the
password-assignment procedure given in Section 2.3, “Securing the Initial MySQL Accounts”.

Before setting up passwords, you might want to try running some client programs to make sure that you can connect to the server
and that it is operating properly. Make sure that the server is running (see Starting the Server for the First Time), and then issue the
following commands to verify that you can retrieve information from the server. The output should be similar to what is shown
here:

C:\> C:\mysql\bin\mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
C:\> C:\mysql\bin\mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| event |
| func |
| general_log |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| plugin |
| proc |
| procs_priv |
| servers |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
C:\> C:\mysql\bin\mysql -e "SELECT Host,Db,User FROM db" mysql
+------+-------+------+
| host | db | user |
+------+-------+------+
| % | test% | |
+------+-------+------+

You may need to specify a different directory from the one shown; if you used the Windows Installation Wizard, then the default
directory is C:\Program Files\MySQL\MySQL Server 5.1, and the mysql and mysqlshow client programs are in
C:\Program Files\MySQL\MySQL Server 5.1\bin. See Using the MySQL Installation Wizard, for more information.

If you have already secured the initial MySQL accounts, you may need to use the -u and -p options to supply a user name and
password to the mysqlshow and mysql client programs; otherwise the programs may fail with an error, or you may not be able
to view all databases. For example, if you have assigned the password “secretpass” to the MySQL root account, then you can in-

8

http://dev.mysql.com/doc/refman/5.1/en/windows-install-wizard.html
http://dev.mysql.com/doc/refman/5.1/en/windows-server-first-start.html
http://dev.mysql.com/doc/refman/5.1/en/windows-install-wizard.html


voke mysqlshow and mysql as shown here:

C:\> C:\mysql\bin\mysqlshow -uroot -psecretpass
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
C:\> C:\mysql\bin\mysqlshow -uroot -psecretpass mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| event |
| func |
| general_log |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| plugin |
| proc |
| procs_priv |
| servers |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
C:\> C:\mysql\bin\mysql -uroot -psecretpass -e "SELECT Host,Db,User FROM db" mysql
+------+-------+------+
| host | db | user |
+------+-------+------+
| % | test% | |
+------+-------+------+

For more information about these programs, see mysqlshow, and mysql.

If you are running a version of Windows that supports services and you want the MySQL server to run automatically when Win-
dows starts, see Starting MySQL as a Windows Service.

2.2. Unix Post-Installation Procedures
After installing MySQL on Unix, you need to initialize the grant tables, start the server, and make sure that the server works satis-
factorily. You may also wish to arrange for the server to be started and stopped automatically when your system starts and stops.
You should also assign passwords to the accounts in the grant tables.

On Unix, the grant tables are set up by the mysql_install_db program. For some installation methods, this program is run for
you automatically:

• If you install MySQL on Linux using RPM distributions, the server RPM runs mysql_install_db.

• If you install MySQL on Mac OS X using a PKG distribution, the installer runs mysql_install_db.

Otherwise, you'll need to run mysql_install_db yourself.

The following procedure describes how to initialize the grant tables (if that has not previously been done) and then start the server.
It also suggests some commands that you can use to test whether the server is accessible and working properly. For information
about starting and stopping the server automatically, see Section 2.2.2, “Starting and Stopping MySQL Automatically”.

After you complete the procedure and have the server running, you should assign passwords to the accounts created by
mysql_install_db. Instructions for doing so are given in Section 2.3, “Securing the Initial MySQL Accounts”.

In the examples shown here, the server runs under the user ID of the mysql login account. This assumes that such an account ex-
ists. Either create the account if it does not exist, or substitute the name of a different existing login account that you plan to use for
running the server.

1. Change location into the top-level directory of your MySQL installation, represented here by BASEDIR:

shell> cd BASEDIR

Post-Installation Setup and Testing

9

http://dev.mysql.com/doc/refman/5.1/en/mysqlimport.html#mysqlshow
http://dev.mysql.com/doc/refman/5.1/en/mysql.html
http://dev.mysql.com/doc/refman/5.1/en/windows-start-service.html


BASEDIR is likely to be something like /usr/local/mysql or /usr/local. The following steps assume that you are
located in this directory.

2. If necessary, run the mysql_install_db program to set up the initial MySQL grant tables containing the privileges that
determine how users are allowed to connect to the server. You'll need to do this if you used a distribution type for which the
installation procedure doesn't run the program for you.

Typically, mysql_install_db needs to be run only the first time you install MySQL, so you can skip this step if you are
upgrading an existing installation, However, mysql_install_db does not overwrite any existing privilege tables, so it
should be safe to run in any circumstances.

To initialize the grant tables, use one of the following commands, depending on whether mysql_install_db is located in
the bin or scripts directory:

shell> bin/mysql_install_db --user=mysql
shell> scripts/mysql_install_db --user=mysql

It might be necessary to specify other options such as --basedir or --datadir if mysql_install_db does not use
the correct locations for the installation directory or data directory. For example:

shell> bin/mysql_install_db --user=mysql \
--basedir=/opt/mysql/mysql \
--datadir=/opt/mysql/mysql/data

The mysql_install_db script creates the server's data directory. Under the data directory, it creates directories for the
mysql database that holds all database privileges and the test database that you can use to test MySQL. The script also cre-
ates privilege table entries for root and anonymous-user accounts. The accounts have no passwords initially. A description of
their initial privileges is given in Section 2.3, “Securing the Initial MySQL Accounts”. Briefly, these privileges allow the
MySQL root user to do anything, and allow anybody to create or use databases with a name of test or starting with
test_.

It is important to make sure that the database directories and files are owned by the mysql login account so that the server has
read and write access to them when you run it later. To ensure this, the --user option should be used as shown if you run
mysql_install_db as root. Otherwise, you should execute the script while logged in as mysql, in which case you can
omit the --user option from the command.

mysql_install_db creates several tables in the mysql database, including user, db, host, tables_priv,
columns_priv, func, and others. See Chapter 3, The MySQL Access Privilege System, for a complete listing and descrip-
tion of these tables.

If you don't want to have the test database, you can remove it with mysqladmin -u root drop test after starting
the server.

If you have trouble with mysql_install_db at this point, see Section 2.2.1, “Problems Running mysql_install_db”.

3. Start the MySQL server:

shell> bin/mysqld_safe --user=mysql &

It is important that the MySQL server be run using an unprivileged (non-root) login account. To ensure this, the --user
option should be used as shown if you run mysqld_safe as system root. Otherwise, you should execute the script while
logged in to the system as mysql, in which case you can omit the --user option from the command.

Further instructions for running MySQL as an unprivileged user are given in Section 1.5, “How to Run MySQL as a Normal
User”.

If you neglected to create the grant tables before proceeding to this step, the following message appears in the error log file
when you start the server:

mysqld: Can't find file: 'host.frm'

If you have other problems starting the server, see Section 2.2.3, “Starting and Troubleshooting the MySQL Server”.

4. Use mysqladmin to verify that the server is running. The following commands provide simple tests to check whether the
server is up and responding to connections:

shell> bin/mysqladmin version
shell> bin/mysqladmin variables

Post-Installation Setup and Testing

10

http://dev.mysql.com/doc/refman/5.1/en/mysql-install-db.html#option_mysql_install_db_basedir
http://dev.mysql.com/doc/refman/5.1/en/mysql-install-db.html#option_mysql_install_db_datadir
http://dev.mysql.com/doc/refman/5.1/en/mysqld-safe.html#option_mysqld_safe_user
http://dev.mysql.com/doc/refman/5.1/en/mysqld-safe.html#option_mysqld_safe_user


The output from mysqladmin version varies slightly depending on your platform and version of MySQL, but should be
similar to that shown here:

shell> bin/mysqladmin version
mysqladmin Ver 14.12 Distrib 5.1.36, for pc-linux-gnu on i686
...
Server version 5.1.36
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 14 days 5 hours 5 min 21 sec
Threads: 1 Questions: 366 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 19
Queries per second avg: 0.000

To see what else you can do with mysqladmin, invoke it with the --help option.

5. Verify that you can shut down the server:

shell> bin/mysqladmin -u root shutdown

6. Verify that you can start the server again. Do this by using mysqld_safe or by invoking mysqld directly. For example:

shell> bin/mysqld_safe --user=mysql --log &

If mysqld_safe fails, see Section 2.2.3, “Starting and Troubleshooting the MySQL Server”.

7. Run some simple tests to verify that you can retrieve information from the server. The output should be similar to what is
shown here:

shell> bin/mysqlshow
+-----------+
| Databases |
+-----------+
| mysql |
| test |
+-----------+
shell> bin/mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| proc |
| procs_priv |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
shell> bin/mysql -e "SELECT Host,Db,User FROM db" mysql
+------+--------+------+
| host | db | user |
+------+--------+------+
| % | test | |
| % | test_% | |
+------+--------+------+

8. There is a benchmark suite in the sql-bench directory (under the MySQL installation directory) that you can use to com-
pare how MySQL performs on different platforms. The benchmark suite is written in Perl. It requires the Perl DBI module that
provides a database-independent interface to the various databases, and some other additional Perl modules:

DBI
DBD::mysql
Data::Dumper
Data::ShowTable

These modules can be obtained from CPAN (http://www.cpan.org/). See also Installing Perl on Unix.

The sql-bench/Results directory contains the results from many runs against different databases and platforms. To run
all tests, execute these commands:

Post-Installation Setup and Testing

11

http://dev.mysql.com/doc/refman/5.1/en/mysqladmin.html#option_mysqladmin_help
http://www.cpan.org/
http://dev.mysql.com/doc/refman/5.1/en/perl-installation.html


shell> cd sql-bench
shell> perl run-all-tests

If you don't have the sql-bench directory, you probably installed MySQL using RPM files other than the source RPM.
(The source RPM includes the sql-bench benchmark directory.) In this case, you must first install the benchmark suite be-
fore you can use it. There are separate benchmark RPM files named mysql-bench-VERSION.i386.rpm that contain
benchmark code and data.

If you have a source distribution, there are also tests in its tests subdirectory that you can run. For example, to run
auto_increment.tst, execute this command from the top-level directory of your source distribution:

shell> mysql -vvf test < ./tests/auto_increment.tst

The expected result of the test can be found in the ./tests/auto_increment.res file.

9. At this point, you should have the server running. However, none of the initial MySQL accounts have a password, so you
should assign passwords using the instructions found in Section 2.3, “Securing the Initial MySQL Accounts”.

The MySQL 5.1 installation procedure creates time zone tables in the mysql database. However, you must populate the tables
manually using the instructions in MySQL Server Time Zone Support.

2.2.1. Problems Running mysql_install_db

The purpose of the mysql_install_db script is to generate new MySQL privilege tables. It does not overwrite existing
MySQL privilege tables, and it does not affect any other data.

If you want to re-create your privilege tables, first stop the mysqld server if it is running. Then rename the mysql directory under
the data directory to save it, and then run mysql_install_db. Suppose that your current directory is the MySQL installation
directory and that mysql_install_db is located in the bin directory and the data directory is named data. To rename the
mysql database and re-run mysql_install_db, use these commands.

shell> mv data/mysql data/mysql.old
shell> bin/mysql_install_db --user=mysql

When you run mysql_install_db, you might encounter the following problems:

• mysql_install_db fails to install the grant tables

You may find that mysql_install_db fails to install the grant tables and terminates after displaying the following mes-
sages:

Starting mysqld daemon with databases from XXXXXX
mysqld ended

In this case, you should examine the error log file very carefully. The log should be located in the directory XXXXXX named by
the error message and should indicate why mysqld didn't start. If you do not understand what happened, include the log when
you post a bug report. See How to Report Bugs or Problems.

• There is a mysqld process running

This indicates that the server is running, in which case the grant tables have probably been created already. If so, there is no
need to run mysql_install_db at all because it needs to be run only once (when you install MySQL the first time).

• Installing a second mysqld server does not work when one server is running

This can happen when you have an existing MySQL installation, but want to put a new installation in a different location. For
example, you might have a production installation, but you want to create a second installation for testing purposes. Generally
the problem that occurs when you try to run a second server is that it tries to use a network interface that is in use by the first
server. In this case, you should see one of the following error messages:

Can't start server: Bind on TCP/IP port:
Address already in use
Can't start server: Bind on unix socket...

For instructions on setting up multiple servers, see Running Multiple MySQL Servers on the Same Machine.

• You do not have write access to the /tmp directory

Post-Installation Setup and Testing

12

http://dev.mysql.com/doc/refman/5.1/en/time-zone-support.html
http://dev.mysql.com/doc/refman/5.1/en/bug-reports.html
http://dev.mysql.com/doc/refman/5.1/en/multiple-servers.html


If you do not have write access to create temporary files or a Unix socket file in the default location (the /tmp directory), an er-
ror occurs when you run mysql_install_db or the mysqld server.

You can specify different locations for the temporary directory and Unix socket file by executing these commands prior to start-
ing mysql_install_db or mysqld, where some_tmp_dir is the full path name to some directory for which you have
write permission:

shell> TMPDIR=/some_tmp_dir/
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock
shell> export TMPDIR MYSQL_UNIX_PORT

Then you should be able to run mysql_install_db and start the server with these commands:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysqld_safe --user=mysql &

If mysql_install_db is located in the scripts directory, modify the first command to scripts/
mysql_install_db.

See How to Protect or Change the MySQL Unix Socket File, and Environment Variables.

There are some alternatives to running the mysql_install_db script provided in the MySQL distribution:

• If you want the initial privileges to be different from the standard defaults, you can modify mysql_install_db before you
run it. However, it is preferable to use GRANT and REVOKE to change the privileges after the grant tables have been set up. In
other words, you can run mysql_install_db, and then use mysql -u root mysql to connect to the server as the
MySQL root user so that you can issue the necessary GRANT and REVOKE statements.

If you want to install MySQL on several machines with the same privileges, you can put the GRANT and REVOKE statements in
a file and execute the file as a script using mysql after running mysql_install_db. For example:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysql -u root < your_script_file

By doing this, you can avoid having to issue the statements manually on each machine.

• It is possible to re-create the grant tables completely after they have previously been created. You might want to do this if
you're just learning how to use GRANT and REVOKE and have made so many modifications after running
mysql_install_db that you want to wipe out the tables and start over.

To re-create the grant tables, remove all the .frm, .MYI, and .MYD files in the mysql database directory. Then run the
mysql_install_db script again.

• You can start mysqld manually using the --skip-grant-tables option and add the privilege information yourself using
mysql:

shell> bin/mysqld_safe --user=mysql --skip-grant-tables &
shell> bin/mysql mysql

From mysql, manually execute the SQL commands contained in mysql_install_db. Make sure that you run mysqlad-
min flush-privileges or mysqladmin reload afterward to tell the server to reload the grant tables.

Note that by not using mysql_install_db, you not only have to populate the grant tables manually, you also have to create
them first.

2.2.2. Starting and Stopping MySQL Automatically
Generally, you start the mysqld server in one of these ways:

• By invoking mysqld directly. This works on any platform.

• By running the MySQL server as a Windows service. The service can be set to start the server automatically when Windows
starts, or as a manual service that you start on request. For instructions, see Starting MySQL as a Windows Service.

• By invoking mysqld_safe, which tries to determine the proper options for mysqld and then runs it with those options. This

Post-Installation Setup and Testing

13

http://dev.mysql.com/doc/refman/5.1/en/administration-issues.html#problems-with-mysql-sock
http://dev.mysql.com/doc/refman/5.1/en/environment-variables.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-grant-tables
http://dev.mysql.com/doc/refman/5.1/en/windows-start-service.html


script is used on Unix and Unix-like systems. See mysqld_safe.

• By invoking mysql.server. This script is used primarily at system startup and shutdown on systems that use System V-
style run directories, where it usually is installed under the name mysql. The mysql.server script starts the server by in-
voking mysqld_safe. See mysql.server.

• On Mac OS X, you can install a separate MySQL Startup Item package to enable the automatic startup of MySQL on system
startup. The Startup Item starts the server by invoking mysql.server. See Installing MySQL on Mac OS X, for details.

The mysqld_safe and mysql.server scripts and the Mac OS X Startup Item can be used to start the server manually, or
automatically at system startup time. mysql.server and the Startup Item also can be used to stop the server.

To start or stop the server manually using the mysql.server script, invoke it with start or stop arguments:

shell> mysql.server start
shell> mysql.server stop

Before mysql.server starts the server, it changes location to the MySQL installation directory, and then invokes
mysqld_safe. If you want the server to run as some specific user, add an appropriate user option to the [mysqld] group of
the /etc/my.cnf option file, as shown later in this section. (It is possible that you will need to edit mysql.server if you've
installed a binary distribution of MySQL in a non-standard location. Modify it to cd into the proper directory before it runs
mysqld_safe. If you do this, your modified version of mysql.server may be overwritten if you upgrade MySQL in the fu-
ture, so you should make a copy of your edited version that you can reinstall.)

mysql.server stop stops the server by sending a signal to it. You can also stop the server manually by executing mysqlad-
min shutdown.

To start and stop MySQL automatically on your server, you need to add start and stop commands to the appropriate places in your
/etc/rc* files.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server script is installed in the /
etc/init.d directory with the name mysql. You need not install it manually. See Installing MySQL from RPM Packages on
Linux, for more information on the Linux RPM packages.

Some vendors provide RPM packages that install a startup script under a different name such as mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not install mysql.server auto-
matically, you can install it manually. The script can be found in the support-files directory under the MySQL installation
directory or in a MySQL source tree.

To install mysql.server manually, copy it to the /etc/init.d directory with the name mysql, and then make it executable.
Do this by changing location into the appropriate directory where mysql.server is located and executing these commands:

shell> cp mysql.server /etc/init.d/mysql
shell> chmod +x /etc/init.d/mysql

Older Red Hat systems use the /etc/rc.d/init.d directory rather than /etc/init.d. Adjust the preceding commands ac-
cordingly. Alternatively, first create /etc/init.d as a symbolic link that points to /etc/rc.d/init.d:

shell> cd /etc
shell> ln -s rc.d/init.d .

After installing the script, the commands needed to activate it to run at system startup depend on your operating system. On Linux,
you can use chkconfig:

shell> chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the mysql script:

shell> chkconfig --level 345 mysql on

On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. The rc(8) manual page states that scripts in
this directory are executed only if their basename matches the *.sh shell file name pattern. Any other files or directories present
within the directory are silently ignored. In other words, on FreeBSD, you should install the mysql.server script as /
usr/local/etc/rc.d/mysql.server.sh to enable automatic startup.

As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /etc/init.d/boot.local
to start additional services on startup. To start up MySQL using this method, you could append a command like the one following
to the appropriate startup file:

Post-Installation Setup and Testing

14

http://dev.mysql.com/doc/refman/5.1/en/mysqld-safe.html
http://dev.mysql.com/doc/refman/5.1/en/mysqld-safe.html#mysql-server
http://dev.mysql.com/doc/refman/5.1/en/mac-os-x-installation.html
http://dev.mysql.com/doc/refman/5.1/en/linux-rpm.html
http://dev.mysql.com/doc/refman/5.1/en/linux-rpm.html


/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

For other systems, consult your operating system documentation to see how to install startup scripts.

You can add options for mysql.server in a global /etc/my.cnf file. A typical /etc/my.cnf file might look like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql
[mysql.server]
basedir=/usr/local/mysql

The mysql.server script supports the following options: basedir, datadir, and pid-file. If specified, they must be
placed in an option file, not on the command line. mysql.server supports only start and stop as command-line arguments.

The following table shows which option groups the server and each startup script read from option files.

Script Option Groups

mysqld [mysqld], [server], [mysqld-major_version]

mysqld_safe [mysqld], [server], [mysqld_safe]

mysql.server [mysqld], [mysql.server], [server]

[mysqld-major_version] means that groups with names like [mysqld-5.0] and [mysqld-5.1] are read by servers
having versions 5.0.x, 5.1.x, and so forth. This feature can be used to specify options that can be read only by servers within a given
release series.

For backward compatibility, mysql.server also reads the [mysql_server] group and mysqld_safe also reads the
[safe_mysqld] group. However, you should update your option files to use the [mysql.server] and [mysqld_safe]
groups instead when using MySQL 5.1.

See Using Option Files.

2.2.3. Starting and Troubleshooting the MySQL Server
This section provides troubleshooting suggestions for problems starting the server on Unix. If you are using Windows, see
Troubleshooting a MySQL Installation Under Windows.

If you have problems starting the server, here are some things to try:

• Check the error log to see why the server does not start.

• Specify any special options needed by the storage engines you are using.

• Make sure that the server knows where to find the data directory.

• Make sure that the server can access the data directory. The ownership and permissions of the data directory and its contents
must be set such that the server can read and modify them.

• Verify that the network interfaces the server wants to use are available.

Some storage engines have options that control their behavior. You can create a my.cnf file and specify startup options for the en-
gines that you plan to use. If you are going to use storage engines that support transactional tables (InnoDB, NDB), be sure that you
have them configured the way you want before starting the server:

MySQL Enterprise
For expert advice on start-up options appropriate to your circumstances, subscribe to The MySQL Enter-
prise Monitor. For more information, see http://www.mysql.com/products/enterprise/advisors.html.

• If you are using InnoDB tables, see InnoDB Configuration.

• If you are using MySQL Cluster, see MySQL Cluster Configuration.

Storage engines will use default option values if you specify none, but it is recommended that you review the available options and

Post-Installation Setup and Testing

15

http://dev.mysql.com/doc/refman/5.1/en/option-files.html
http://dev.mysql.com/doc/refman/5.1/en/windows-troubleshooting.html
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-configuration.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-configuration.html


specify explicit values for those for which the defaults are not appropriate for your installation.

When the mysqld server starts, it changes location to the data directory. This is where it expects to find databases and where it ex-
pects to write log files. The server also writes the pid (process ID) file in the data directory.

The data directory location is hardwired in when the server is compiled. This is where the server looks for the data directory by de-
fault. If the data directory is located somewhere else on your system, the server will not work properly. You can determine what the
default path settings are by invoking mysqld with the --verbose and --help options.

If the default locations don't match the MySQL installation layout on your system, you can override them by specifying options to
mysqld or mysqld_safe on the command line or in an option file.

To specify the location of the data directory explicitly, use the --datadir option. However, normally you can tell mysqld the
location of the base directory under which MySQL is installed and it looks for the data directory there. You can do this with the -
-basedir option.

To check the effect of specifying path options, invoke mysqld with those options followed by the --verbose and --help op-
tions. For example, if you change location into the directory where mysqld is installed and then run the following command, it
shows the effect of starting the server with a base directory of /usr/local:

shell> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but --verbose and --help must be the last options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this command:

shell> mysqladmin variables

Or:

shell> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means that the privileges of the
data directory or its contents do not allow the server access. In this case, you change the permissions for the involved files and dir-
ectories so that the server has the right to use them. You can also start the server as root, but this raises security issues and should
be avoided.

On Unix, change location into the data directory and check the ownership of the data directory and its contents to make sure the
server has access. For example, if the data directory is /usr/local/mysql/var, use this command:

shell> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use for running the server, change
their ownership to that account. If the account is named mysql, use these commands:

shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql/var

If the server fails to start up correctly, check the error log. Log files are located in the data directory (typically C:\Program
Files\MySQL\MySQL Server 5.1\data on Windows, /usr/local/mysql/data for a Unix binary distribution, and
/usr/local/var for a Unix source distribution). Look in the data directory for files with names of the form host_name.err
and host_name.log, where host_name is the name of your server host. Then examine the last few lines of these files. On
Unix, you can use tail to display them:

shell> tail host_name.err
shell> tail host_name.log

The error log should contain information that indicates why the server couldn't start.

If either of the following errors occur, it means that some other program (perhaps another mysqld server) is using the TCP/IP port
or Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Post-Installation Setup and Testing

16

http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_verbose
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_help
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_datadir
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_basedir
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_basedir
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_verbose
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_help
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_datadir
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_verbose
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_help
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_verbose
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_help


Use ps to determine whether you have another mysqld server running. If so, shut down the server before starting mysqld again.
(If another server is running, and you really want to run multiple servers, you can find information about how to do so in Running
Multiple MySQL Servers on the Same Machine.)

If no other server is running, try to execute the command telnet your_host_name tcp_ip_port_number. (The default
MySQL port number is 3306.) Then press Enter a couple of times. If you don't get an error message like telnet: Unable to
connect to remote host: Connection refused, some other program is using the TCP/IP port that mysqld is try-
ing to use. You'll need to track down what program this is and disable it, or else tell mysqld to listen to a different port with the -
-port option. In this case, you'll also need to specify the port number for client programs when connecting to the server via TCP/
IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks connections to it. If so, modify the
firewall settings to allow access to the port.

If the server starts but you can't connect to it, you should make sure that you have an entry in /etc/hosts that looks like this:

127.0.0.1 localhost

This problem occurs only on systems that do not have a working thread library and for which MySQL must be configured to use
MIT-pthreads.

If you cannot get mysqld to start, you can try to make a trace file to find the problem by using the --debug option. See MySQL
Internals: Porting.

2.3. Securing the Initial MySQL Accounts
Part of the MySQL installation process is to set up the mysql database that contains the grant tables:

• Windows distributions contain preinitialized grant tables that are installed automatically.

• On Unix, the grant tables are populated by the mysql_install_db program. Some installation methods run this program
for you. Others require that you execute it manually. For details, see Section 2.2, “Unix Post-Installation Procedures”.

The grant tables define the initial MySQL user accounts and their access privileges. These accounts are set up as follows:

• Accounts with the user name root are created. These are superuser accounts that can do anything. The initial root account
passwords are empty, so anyone can connect to the MySQL server as root — without a password — and be granted all priv-
ileges.

• On Windows, one root account is created; this account allows connecting from the local host only. The Windows installer
will optionally create an account allowing for connections from any host only if the user selects the ENABLE ROOT ACCESS
FROM REMOTE MACHINES option during installation.

• On Unix, both root accounts are for connections from the local host. Connections must be made from the local host by
specifying a host name of localhost for one of the accounts, or the actual host name or IP number for the other.

• Two anonymous-user accounts are created, each with an empty user name. The anonymous accounts have no password, so any-
one can use them to connect to the MySQL server.

• On Windows, one anonymous account is for connections from the local host. It has no global privileges. (Before MySQL
5.1.16, it has all global privileges, just like the root accounts.) The other is for connections from any host and has all priv-
ileges for the test database and for other databases with names that start with test.

• On Unix, both anonymous accounts are for connections from the local host. Connections must be made from the local host
by specifying a host name of localhost for one of the accounts, or the actual host name or IP number for the other.
These accounts have all privileges for the test database and for other databases with names that start with test_.

As noted, none of the initial accounts have passwords. This means that your MySQL installation is unprotected until you do
something about it:

• If you want to prevent clients from connecting as anonymous users without a password, you should either assign a password to
each anonymous account or else remove the accounts.

• You should assign a password to each MySQL root account.

Post-Installation Setup and Testing

17

http://dev.mysql.com/doc/refman/5.1/en/multiple-servers.html
http://dev.mysql.com/doc/refman/5.1/en/multiple-servers.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_port
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_port
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_debug
http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://forge.mysql.com/wiki/MySQL_Internals_Porting


The following instructions describe how to set up passwords for the initial MySQL accounts, first for the anonymous accounts and
then for the root accounts. Replace “newpwd” in the examples with the actual password that you want to use. The instructions
also cover how to remove the anonymous accounts, should you prefer not to allow anonymous access at all.

You might want to defer setting the passwords until later, so that you don't need to specify them while you perform additional setup
or testing. However, be sure to set them before using your installation for production purposes.

Anonymous Account Password Assignment

To assign passwords to the anonymous accounts, connect to the server as root and then use either SET PASSWORD or UPDATE.
In either case, be sure to encrypt the password using the PASSWORD() function.

To use SET PASSWORD on Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'%' = PASSWORD('newpwd');

To use SET PASSWORD on Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'host_name' = PASSWORD('newpwd');

In the second SET PASSWORD statement, replace host_name with the name of the server host. This is the name that is specified
in the Host column of the non-localhost record for root in the user table. If you don't know what host name this is, issue
the following statement before using SET PASSWORD:

mysql> SELECT Host, User FROM mysql.user;

Look for the record that has root in the User column and something other than localhost in the Host column. Then use that
Host value in the second SET PASSWORD statement.

Anonymous Account Removal

If you prefer to remove the anonymous accounts instead, do so as follows:

shell> mysql -u root
mysql> DROP USER '';

The DROP statement applies both to Windows and to Unix. On Windows, if you want to remove only the anonymous account that
has the same privileges as root, do this instead:

shell> mysql -u root
mysql> DROP USER ''@'localhost';

That account allows anonymous access but has full privileges, so removing it improves security.

root Account Password Assignment

You can assign passwords to the root accounts in several ways. The following discussion demonstrates three methods:

• Use the SET PASSWORD statement

• Use the mysqladmin command-line client program

• Use the UPDATE statement

To assign passwords using SET PASSWORD, connect to the server as root and issue SET PASSWORD statements. Be sure to en-
crypt the password using the PASSWORD() function.

For Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'%' = PASSWORD('newpwd');

For Unix, do this:

Post-Installation Setup and Testing

18

http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password


shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'host_name' = PASSWORD('newpwd');

In the second SET PASSWORD statement, replace host_name with the name of the server host. This is the same host name that
you used when you assigned the anonymous account passwords.

If the user table contains an account with User and Host values of 'root' and '127.0.0.1', use an additional SET
PASSWORD statement to set that account's password:

mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('newpwd');

To assign passwords to the root accounts using mysqladmin, execute the following commands:

shell> mysqladmin -u root password "newpwd"
shell> mysqladmin -u root -h host_name password "newpwd"

These commands apply both to Windows and to Unix. In the second command, replace host_name with the name of the server
host. The double quotes around the password are not always necessary, but you should use them if the password contains spaces or
other characters that are special to your command interpreter.

The mysqladmin method of setting the root account passwords does not set the password for the 'root'@'127.0.0.1'
account. To do so, use SET PASSWORD as shown earlier.

You can also use UPDATE to modify the user table directly. The following UPDATE statement assigns a password to all root
accounts:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')

-> WHERE User = 'root';
mysql> FLUSH PRIVILEGES;

The UPDATE statement applies both to Windows and to Unix.

After the passwords have been set, you must supply the appropriate password whenever you connect to the server. For example, if
you want to use mysqladmin to shut down the server, you can do so using this command:

shell> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

Note

If you forget your root password after setting it up, How to Reset the Root Password, covers the procedure for reset-
ting it.

To set up additional accounts, you can use the GRANT statement. For instructions, see Section 4.2, “Adding User Accounts”.

Post-Installation Setup and Testing

19

http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/administration-issues.html#resetting-permissions
http://dev.mysql.com/doc/refman/5.1/en/grant.html


Chapter 3. The MySQL Access Privilege System
The primary function of the MySQL privilege system is to authenticate a user who connects from a given host and to associate that
user with privileges on a database such as SELECT, INSERT, UPDATE, and DELETE. Additional functionality includes the ability
to have anonymous users and to grant privileges for MySQL-specific functions such as LOAD DATA INFILE and administrative
operations.

There are some things that you cannot do with the MySQL privilege system:

• You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly match a user and then re-
fuse the connection.

• You cannot specify that a user has privileges to create or drop tables in a database but not to create or drop the database itself.

• A password applies globally to an account. You cannot associate a password with a specific object such as a database, table, or
routine.

The user interface to the MySQL privilege system consists of SQL statements such as CREATE USER, GRANT, and REVOKE. See
Account Management Statements.

Internally, the server stores privilege information in the grant tables of the mysql database (that is, in the database named mysql).
The MySQL server reads the contents of these tables into memory when it starts and bases access-control decisions on the in-
memory copies of the grant tables.

The MySQL privilege system ensures that all users may perform only the operations allowed to them. As a user, when you connect
to a MySQL server, your identity is determined by the host from which you connect and the user name you specify. When you issue
requests after connecting, the system grants privileges according to your identity and what you want to do.

MySQL considers both your host name and user name in identifying you because there is no reason to assume that a given user
name belongs to the same person on all hosts. For example, the user joe who connects from office.example.com need not
be the same person as the user joe who connects from home.example.com. MySQL handles this by allowing you to distin-
guish users on different hosts that happen to have the same name: You can grant one set of privileges for connections by joe from
office.example.com, and a different set of privileges for connections by joe from home.example.com. To see what
privileges a given account has, use the SHOW GRANTS statement. For example:

SHOW GRANTS FOR 'joe'@'office.example.com';
SHOW GRANTS FOR 'joe'@'home.example.com';

MySQL access control involves two stages when you run a client program that connects to the server:

Stage 1: The server accepts or rejects the connection based on your identity and whether you can verify your identity by supplying
the correct password.

Stage 2: Assuming that you can connect, the server checks each statement you issue to determine whether you have sufficient priv-
ileges to perform it. For example, if you try to select rows from a table in a database or drop a table from the database, the server
verifies that you have the SELECT privilege for the table or the DROP privilege for the database.

For a more detailed description of what happens during each stage, see Section 3.4, “Access Control, Stage 1: Connection Verifica-
tion”, and Section 3.5, “Access Control, Stage 2: Request Verification”.

If your privileges are changed (either by yourself or someone else) while you are connected, those changes do not necessarily take
effect immediately for the next statement that you issue. For details about the conditions under which the server reloads the grant
tables, see Section 3.6, “When Privilege Changes Take Effect”.

For general security-related advice, see Chapter 1, General Security Issues. For help in diagnosing privilege-related problems, see
Section 3.7, “Causes of Access-Denied Errors”.

3.1. Privileges Provided by MySQL
MySQL provides privileges that apply in different contexts and at different levels of operation:

• Administrative privileges enable users to manage operation of the MySQL server. These privileges are global because they are
not specific to a particular database.

• Database privileges apply to a database and to all objects within it. These privileges can be granted for specific databases, or
globally so that they apply to all databases.

20

http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/delete.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html
http://dev.mysql.com/doc/refman/5.1/en/account-management-sql.html
http://dev.mysql.com/doc/refman/5.1/en/show-grants.html


• Privileges for database objects such as tables, indexes, views, and stored routines can be granted for specific objects within a
database, for all objects of a given type within a database (for example, all tables in a database), or globally for all objects of a
given type in all databases).

Information about account privileges is stored in the user, db, host, tables_priv, columns_priv, and procs_priv
tables in the mysql database (see Section 3.2, “Privilege System Grant Tables”). The MySQL server reads the contents of these
tables into memory when it starts and reloads them under the circumstances indicated in Section 3.6, “When Privilege Changes
Take Effect”. Access-control decisions are based on the in-memory copies of the grant tables.

Some releases of MySQL introduce changes to the structure of the grant tables to add new access privileges or features. Whenever
you update to a new version of MySQL, you should update your grant tables to make sure that they have the current structure so
that you can take advantage of any new capabilities. See mysql_upgrade.

The following table shows the privilege names used at the SQL level in the GRANT and REVOKE statements, along with the
column name associated with each privilege in the grant tables and the context in which the privilege applies.

Privilege Column Context

CREATE Create_priv databases, tables, or indexes

DROP Drop_priv databases or tables

GRANT OPTION Grant_priv databases, tables, or stored routines

REFERENCES References_priv databases or tables

EVENT Event_priv databases

ALTER Alter_priv tables

DELETE Delete_priv tables

INDEX Index_priv tables

INSERT Insert_priv tables

SELECT Select_priv tables

UPDATE Update_priv tables

CREATE TEMPORARY TABLES Create_tmp_table_priv tables

LOCK TABLES Lock_tables_priv tables

TRIGGER Trigger_priv tables

CREATE VIEW Create_view_priv views

SHOW VIEW Show_view_priv views

ALTER ROUTINE Alter_routine_priv stored routines

CREATE ROUTINE Create_routine_priv stored routines

EXECUTE Execute_priv stored routines

FILE File_priv file access on server host

CREATE USER Create_user_priv server administration

PROCESS Process_priv server administration

RELOAD Reload_priv server administration

REPLICATION CLIENT Repl_client_priv server administration

REPLICATION SLAVE Repl_slave_priv server administration

SHOW DATABASES Show_db_priv server administration

SHUTDOWN Shutdown_priv server administration

SUPER Super_priv server administration

ALL [PRIVILEGES] server administration

USAGE server administration

The following list provides a general description of each privilege available in MySQL. Particular SQL statements might have
more specific privilege requirements than indicated here. If so, the description for the statement in question provides the details.

• The ALL or ALL PRIVILEGES privilege specifier is shorthand. It stands for “all privileges available at a given privilege
level” (except GRANT OPTION). For example, granting ALL at the global or table level grants all global privileges or all table-

The MySQL Access Privilege System

21

http://dev.mysql.com/doc/refman/5.1/en/mysql-tzinfo-to-sql.html#mysql-upgrade
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html


level privileges.

• The ALTER privilege enables use of ALTER TABLE to change the structure of or rename tables. (ALTER TABLE also re-
quires the INSERT and CREATE privileges.)

MySQL Enterprise
In some circumstances, the ALTER privilege is entirely unnecessary — on slaves where there are no non-
replicated tables, for instance. The MySQL Enterprise Monitor notifies subscribers when accounts have in-
appropriate privileges. For more information, see http://www.mysql.com/products/enterprise/advisors.html.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines (procedures and functions).

• The CREATE privilege enables creation of new databases and tables.

• The CREATE ROUTINE privilege is needed to create stored routines (procedures and functions).

• The CREATE TEMPORARY TABLES privilege enables the use of the keyword TEMPORARY in CREATE TABLE statements.

• The CREATE USER privilege enables use of CREATE USER, DROP USER, RENAME USER, and REVOKE ALL PRIV-
ILEGES.

• The CREATE VIEW privilege enables use of CREATE VIEW.

• The DELETE privilege enables rows to be deleted from tables in a database.

• The DROP privilege enables you to drop (remove) existing databases, tables, and views. Beginning with MySQL 5.1.10, the
DROP privilege is also required in order to use the statement ALTER TABLE ... DROP PARTITION on a partitioned ta-
ble. Beginning with MySQL 5.1.16, the DROP privilege is required for TRUNCATE TABLE (before that, TRUNCATE TABLE
requires the DELETE privilege). If you grant the DROP privilege for the mysql database to a user, that user can drop the data-
base in which the MySQL access privileges are stored.

• The EVENT privilege is required to create, alter, or drop events for the Event Scheduler. This privilege was added in MySQL
5.1.6.

• The EXECUTE privilege is required to execute stored routines (procedures and functions).

• The FILE privilege gives you permission to read and write files on the server host using the LOAD DATA INFILE and SE-
LECT ... INTO OUTFILE statements. A user who has the FILE privilege can read any file on the server host that is either
world-readable or readable by the MySQL server. (This implies the user can read any file in any database directory, because the
server can access any of those files.) The FILE privilege also enables the user to create new files in any directory where the
MySQL server has write access. As a security measure, the server will not overwrite existing files.

• The GRANT OPTION privilege enables you to give to other users or remove from other users those privileges that you yourself
possess.

• The INDEX privilege enables you to create or drop (remove) indexes. INDEX applies to existing tables. If you have the CRE-
ATE privilege for a table, you can include index definitions in the CREATE TABLE statement.

• The INSERT privilege enables rows to be inserted into tables in a database. INSERT is also required for the ANALYZE TA-
BLE, OPTIMIZE TABLE, and REPAIR TABLE table-maintenance statements.

• The LOCK TABLES privilege enables the use of explicit LOCK TABLES statements to lock tables for which you have the SE-
LECT privilege. This includes the use of write locks, which prevents other sessions from reading the locked table.

• The PROCESS privilege pertains to display of information about the threads executing within the server (that is, information
about the statements being executed by sessions). The privilege enables use of SHOW PROCESSLIST or mysqladmin
processlist to see threads belonging to other accounts; you can always see your own threads.

• The REFERENCES privilege currently is unused.

• The RELOAD privilege enables use of the FLUSH statement. It also enables mysqladmin commands that are equivalent to
FLUSH operations: flush-hosts, flush-logs, flush-privileges, flush-status, flush-tables, flush-
threads, refresh, and reload.

The reload command tells the server to reload the grant tables into memory. flush-privileges is a synonym for re-
load. The refresh command closes and reopens the log files and flushes all tables. The other flush-xxx commands per-
form functions similar to refresh, but are more specific and may be preferable in some instances. For example, if you want
to flush just the log files, flush-logs is a better choice than refresh.

• The REPLICATION CLIENT privilege enables the use of SHOW MASTER STATUS and SHOW SLAVE STATUS.

The MySQL Access Privilege System

22

http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/drop-user.html
http://dev.mysql.com/doc/refman/5.1/en/rename-user.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html
http://dev.mysql.com/doc/refman/5.1/en/create-view.html
http://dev.mysql.com/doc/refman/5.1/en/truncate.html
http://dev.mysql.com/doc/refman/5.1/en/truncate.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/analyze-table.html
http://dev.mysql.com/doc/refman/5.1/en/analyze-table.html
http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.1/en/repair-table.html
http://dev.mysql.com/doc/refman/5.1/en/lock-tables.html
http://dev.mysql.com/doc/refman/5.1/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/show-master-status.html
http://dev.mysql.com/doc/refman/5.1/en/show-slave-status.html


• The REPLICATION SLAVE privilege should be granted to accounts that are used by slave servers to connect to the current
server as their master. Without this privilege, the slave cannot request updates that have been made to databases on the master
server.

• The SELECT privilege enables you to select rows from tables in a database. SELECT statements require the SELECT privilege
only if they actually retrieve rows from a table. Some SELECT statements do not access tables and can be executed without
permission for any database. For example, you can use SELECT as a simple calculator to evaluate expressions that make no
reference to tables:

SELECT 1+1;
SELECT PI()*2;

• The SHOW DATABASES privilege enables the account to see database names by issuing the SHOW DATABASE statement. Ac-
counts that do not have this privilege see only databases for which they have some privileges, and cannot use the statement at
all if the server was started with the --skip-show-database option. Note that any global privilege is a privilege for the
database.

MySQL Enterprise
The SHOW DATABASES privilege should be granted only to users who need to see all the databases on a
MySQL server. Subscribers to the MySQL Enterprise Monitor are alerted when servers are started without
the --skip-show-database option. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

• The SHOW VIEW privilege enables use of SHOW CREATE VIEW.

• The SHUTDOWN privilege enables use of the mysqladmin shutdown command. There is no corresponding SQL statement.

• The SUPER privilege enables use of CHANGE MASTER TO, KILL or mysqladmin kill to kill threads belonging to other
accounts (you can always kill your own threads), PURGE BINARY LOGS, and SET GLOBAL statements, the mysqladmin
debug command, and allows you to connect (once) even if the connection limit controlled by the max_connections sys-
tem variable is reached.

To create or alter stored functions if binary logging is enabled, you may also need the SUPER privilege, as described in Binary
Logging of Stored Programs.

• The TRIGGER privilege enables you to create and drop triggers. You must have this privilege for a table to create or drop trig-
gers for that table. This privilege was added in MySQL 5.1.6. (Prior to MySQL 5.1.6, trigger operations required the SUPER
privilege.)

• The UPDATE privilege enables rows to be updated in tables in a database.

• The USAGE privilege specifier stands for “no privileges.” It is used at the global level with GRANT to modify account attributes
such as resource limits or SSL characteristics without affecting existing account privileges.

It is a good idea to grant to an account only those privileges that it needs. You should exercise particular caution in granting the
FILE and administrative privileges:

• The FILE privilege can be abused to read into a database table any files that the MySQL server can read on the server host.
This includes all world-readable files and files in the server's data directory. The table can then be accessed using SELECT to
transfer its contents to the client host.

• The GRANT OPTION privilege enables users to give their privileges to other users. Two users that have different privileges
and with the GRANT OPTION privilege are able to combine privileges.

• The ALTER privilege may be used to subvert the privilege system by renaming tables.

• The SHUTDOWN privilege can be abused to deny service to other users entirely by terminating the server.

• The PROCESS privilege can be used to view the plain text of currently executing statements, including statements that set or
change passwords.

• The SUPER privilege can be used to terminate other sessions or change how the server operates.

• Privileges granted for the mysql database itself can be used to change passwords and other access privilege information. Pass-
words are stored encrypted, so a malicious user cannot simply read them to know the plain text password. However, a user with
write access to the user table Password column can change an account's password, and then connect to the MySQL server
using that account.

MySQL Enterprise

The MySQL Access Privilege System

23

http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-show-database
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-show-database
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/5.1/en/show-create-view.html
http://dev.mysql.com/doc/refman/5.1/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.1/en/kill.html
http://dev.mysql.com/doc/refman/5.1/en/purge-binary-logs.html
http://dev.mysql.com/doc/refman/5.1/en/set-option.html
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_max_connections
http://dev.mysql.com/doc/refman/5.1/en/stored-programs-logging.html
http://dev.mysql.com/doc/refman/5.1/en/stored-programs-logging.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/select.html


Accounts with unnecessary global privileges constitute a security risk. Subscribers to the MySQL Enter-
prise Monitor are automatically alerted to the existence of such accounts. For detailed information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

3.2. Privilege System Grant Tables
Normally, you manipulate the contents of the grant tables indirectly by using statements such as GRANT and REVOKE to set up ac-
counts and control the privileges available to each one. See Account Management Statements. The discussion here describes the
underlying structure of the grant tables and how the server uses their contents when interacting with clients.

Each grant table contains scope columns and privilege columns:

• Scope columns determine the scope of each row (entry) in the tables; that is, the context in which the row applies. For example,
a user table row with Host and User values of 'thomas.loc.gov' and 'bob' would be used for authenticating con-
nections made to the server from the host thomas.loc.gov by a client that specifies a user name of bob. Similarly, a db ta-
ble row with Host, User, and Db column values of 'thomas.loc.gov', 'bob' and 'reports' would be used when
bob connects from the host thomas.loc.gov to access the reports database. The tables_priv and columns_priv
tables contain scope columns indicating tables or table/column combinations to which each row applies. The procs_priv
scope columns indicate the stored routine to which each row applies.

• Privilege columns indicate which privileges are granted by a table row; that is, what operations can be performed. The server
combines the information in the various grant tables to form a complete description of a user's privileges. Section 3.5, “Access
Control, Stage 2: Request Verification”, describes the rules that are used to do this.

The server uses the grant tables in the following manner:

• The user table scope columns determine whether to reject or allow incoming connections. For allowed connections, any priv-
ileges granted in the user table indicate the user's global (superuser) privileges. Any privilege granted in this table applies to
all databases on the server.

Note

Because any global privilege is considered a privilege for all databases, any global privilege enables a user to see all
database names with SHOW DATABASES or by examining the SCHEMATA table of INFORMATION_SCHEMA.

• The db table scope columns determine which users can access which databases from which hosts. The privilege columns de-
termine which operations are allowed. A privilege granted at the database level applies to the database and to all objects in the
database, such as tables and stored programs.

• The host table is used in conjunction with the db table when you want a given db table row to apply to several hosts. For ex-
ample, if you want a user to be able to use a database from several hosts in your network, leave the Host value empty in the
user's db table row, then populate the host table with a row for each of those hosts. This mechanism is described more detail
in Section 3.5, “Access Control, Stage 2: Request Verification”.

Note

The host table must be modified directly with statements such as INSERT, UPDATE, and DELETE. It is not affected
by statements such as GRANT and REVOKE that modify the grant tables indirectly. Most MySQL installations need
not use this table at all.

• The tables_priv and columns_priv tables are similar to the db table, but are more fine-grained: They apply at the table
and column levels rather than at the database level. A privilege granted at the table level applies to the table and to all its
columns. A privilege granted at the column level applies only to a specific column.

• The procs_priv table applies to stored routines. A privilege granted at the routine level applies only to a single routine.

The server uses the user, db, and host tables in the mysql database at both the first and second stages of access control (see
Chapter 3, The MySQL Access Privilege System). The columns in the user and db tables are shown here. The host table is simil-
ar to the db table but has a specialized use as described in Section 3.5, “Access Control, Stage 2: Request Verification”.

Table Name user db

Scope columns Host Host

User Db

Password User

The MySQL Access Privilege System

24

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html
http://dev.mysql.com/doc/refman/5.1/en/account-management-sql.html
http://dev.mysql.com/doc/refman/5.1/en/show-databases.html
http://dev.mysql.com/doc/refman/5.1/en/schemata-table.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/delete.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html


Privilege columns Select_priv Select_priv

Insert_priv Insert_priv

Update_priv Update_priv

Delete_priv Delete_priv

Index_priv Index_priv

Alter_priv Alter_priv

Create_priv Create_priv

Drop_priv Drop_priv

Grant_priv Grant_priv

Create_view_priv Create_view_priv

Show_view_priv Show_view_priv

Create_routine_priv Create_routine_priv

Alter_routine_priv Alter_routine_priv

Execute_priv Execute_priv

Trigger_priv Trigger_priv

Event_priv Event_priv

Create_tmp_table_priv Create_tmp_table_priv

Lock_tables_priv Lock_tables_priv

References_priv References_priv

Reload_priv

Shutdown_priv

Process_priv

File_priv

Show_db_priv

Super_priv

Repl_slave_priv

Repl_client_priv

Create_user_priv

Security columns ssl_type

ssl_cipher

x509_issuer

x509_subject

Resource control columns max_questions

max_updates

max_connections

max_user_connections

The Event_priv and Trigger_priv columns were added in MySQL 5.1.6.

During the second stage of access control, the server performs request verification to make sure that each client has sufficient priv-
ileges for each request that it issues. In addition to the user, db, and host grant tables, the server may also consult the
tables_priv and columns_priv tables for requests that involve tables. The latter tables provide finer privilege control at the
table and column levels. They have the columns shown in the following table.

Table Name tables_priv columns_priv

Scope columns Host Host

Db Db

User User

Table_name Table_name

Column_name

The MySQL Access Privilege System

25

http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_ssl_cipher
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_max_connections
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_max_user_connections


Privilege columns Table_priv Column_priv

Column_priv

Other columns Timestamp Timestamp

Grantor

The Timestamp and Grantor columns currently are unused and are discussed no further here.

For verification of requests that involve stored routines, the server may consult the procs_priv table, which has the columns
shown in the following table.

Table Name procs_priv

Scope columns Host

Db

User

Routine_name

Routine_type

Privilege columns Proc_priv

Other columns Timestamp

Grantor

The Routine_type column is an ENUM column with values of 'FUNCTION' or 'PROCEDURE' to indicate the type of routine
the row refers to. This column enables privileges to be granted separately for a function and a procedure with the same name.

The Timestamp and Grantor columns currently are unused and are discussed no further here.

Scope columns in the grant tables contain strings. They are declared as shown here; the default value for each is the empty string.

Column Name Type

Host CHAR(60)

User CHAR(16)

Password CHAR(41)

Db CHAR(64)

Table_name CHAR(64)

Column_name CHAR(64)

Routine_name CHAR(64)

For access-checking purposes, comparisons of User, Password, Db, and Table_name values are case sensitive. Comparisons
of Host, Column_name, and Routine_name values are not case sensitive.

In the user, db, and host tables, each privilege is listed in a separate column that is declared as ENUM('N','Y') DEFAULT
'N'. In other words, each privilege can be disabled or enabled, with the default being disabled.

In the tables_priv, columns_priv, and procs_priv tables, the privilege columns are declared as SET columns. Values
in these columns can contain any combination of the privileges controlled by the table. Only those privileges listed in the column
value are enabled.

Table Name Column Name Possible Set Elements

tables_priv Table_priv 'Select', 'Insert', 'Update', 'Delete', 'Create',
'Drop', 'Grant', 'References', 'Index', 'Alter', 'Cre-
ate View', 'Show view', 'Trigger'

tables_priv Column_priv 'Select', 'Insert', 'Update', 'References'

columns_priv Column_priv 'Select', 'Insert', 'Update', 'References'

procs_priv Proc_priv 'Execute', 'Alter Routine', 'Grant'

Administrative privileges (such as RELOAD or SHUTDOWN) are specified only in the user table. Administrative operations are op-

The MySQL Access Privilege System

26

http://dev.mysql.com/doc/refman/5.1/en/enum.html
http://dev.mysql.com/doc/refman/5.1/en/set.html


erations on the server itself and are not database-specific, so there is no reason to list these privileges in the other grant tables. Con-
sequently, to determine whether you can perform an administrative operation, the server need consult only the user table.

The FILE privilege also is specified only in the user table. It is not an administrative privilege as such, but your ability to read or
write files on the server host is independent of the database you are accessing.

The mysqld server reads the contents of the grant tables into memory when it starts. You can tell it to reload the tables by issuing
a FLUSH PRIVILEGES statement or executing a mysqladmin flush-privileges or mysqladmin reload command.
Changes to the grant tables take effect as indicated in Section 3.6, “When Privilege Changes Take Effect”.

When you modify an account's privileges, it is a good idea to verify that the changes set up privileges the way you want. To check
the privileges for a given account, use the SHOW GRANTS statement (see SHOW GRANTS Syntax). For example, to determine the
privileges that are granted to an account with user name and host name values of bob and pc84.example.com, use this state-
ment:

SHOW GRANTS FOR 'bob'@'pc84.example.com';

3.3. Specifying Account Names
MySQL account names consist of a user name and a host name. This enables creation of accounts for users with the same name
who can connect from different hosts. This section describes how to write account names, including special values and wildcard
rules.

Within SQL statements such as CREATE USER, GRANT, and SET PASSWORD, account names are written using the following
rules:

• Syntax for account names is 'user_name'@'host_name'.

• An account name consisting only of a user name is equivalent to 'user_name'@'%'. For example, 'me' is equivalent to
'me'@'%'.

• The user name and host name need not be quoted if they are legal as unquoted identifiers. Quotes are necessary to specify a
user_name string containing special characters (such as “-”), or a host_name string containing special characters or wild-
card characters (such as “%”); for example, 'test-user'@'%.com'.

• Quote user names and host names as identifiers or as strings, using either backticks (“`”), single quotes (“'”), or double quotes
(“"”).

• The user name and host name parts, if quoted, must be quoted separately. That is, write 'me'@'localhost', not
'me@localhost'; the latter is interpreted as 'me@localhost'@'%'.

Account names are stored in grant tables using separate columns for the user name and host name parts:

• The user table contains one row for each account. The User and Host columns store the user name and host name. Another
column, Password, stores the account password. This table also indicates which global privileges the account has.

• Other grant tables indicate privileges an account has for databases and objects within databases. These tables have User and
Host columns to store the account name. Each row in these tables associates with the account in the user table that has the
same User and Host values.

For additional detail about grant table structure, see Section 3.2, “Privilege System Grant Tables”.

User names and host names have certain special values or wildcard conventions, as described following.

A user name is either a non-blank value that literally matches the user name for incoming connection attempts, or a blank value
(empty string) that matches any user name. An account with a blank user name is an anonymous user. To specify an anonymous
user in SQL statements, use a quoted empty user name part, such as ''@'localhost'.

The host part of an account name can take many forms, and wildcards are allowed:

• A host value can be a host name or an IP number. 'localhost' indicates the local host. '127.0.0.1' indicates the loop-
back interface.

• You can use the wildcard characters “%” and “_” in host values. These have the same meaning as for pattern-matching opera-
tions performed with the LIKE operator. For example, a host value of '%' matches any host name, whereas a value of
'%.mysql.com' matches any host in the mysql.com domain. '192.168.1.%' matches any host in the 192.168.1 class

The MySQL Access Privilege System

27

http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/show-grants.html
http://dev.mysql.com/doc/refman/5.1/en/show-grants.html
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/string-comparison-functions.html#operator_like


C network.

Because you can use IP wildcard values in host values (for example, '192.168.1.%' to match every host on a subnet),
someone could try to exploit this capability by naming a host 192.168.1.somewhere.com. To foil such attempts, MySQL
disallows matching on host names that start with digits and a dot. Thus, if you have a host named something like
1.2.example.com, its name never matches the host part of account names. An IP wildcard value can match only IP num-
bers, not host names.

MySQL Enterprise
An overly broad host specifier such as “%” constitutes a security risk. The MySQL Enterprise Monitor
provides safeguards against this kind of vulnerability. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

• For host values specified as IP numbers, you can specify a netmask indicating how many address bits to use for the network
number. The syntax is host_ip/netmask. For example:

CREATE USER 'david'@'192.58.197.0/255.255.255.0';

This enables david to connect from any client host having an IP number client_ip for which the following condition is
true:

client_ip & netmask = host_ip

That is, for the CREATE USER statement just shown:

client_ip & 255.255.255.0 = 192.58.197.0

IP numbers that satisfy this condition and can connect to the MySQL server are those in the range from 192.58.197.0 to
192.58.197.255.

The netmask can only be used to tell the server to use 8, 16, 24, or 32 bits of the address. Examples:

• 192.0.0.0/255.0.0.0: anything on the 192 class A network

• 192.168.0.0/255.255.0.0: anything on the 192.168 class B network

• 192.168.1.0/255.255.255.0: anything on the 192.168.1 class C network

• 192.168.1.1: only this specific IP

The following netmask (28 bits) will not work:

192.168.0.1/255.255.255.240

3.4. Access Control, Stage 1: Connection Verification
When you attempt to connect to a MySQL server, the server accepts or rejects the connection based on your identity and whether
you can verify your identity by supplying the correct password. If not, the server denies access to you completely. Otherwise, the
server accepts the connection, and then enters Stage 2 and waits for requests.

Your identity is based on two pieces of information:

• The client host from which you connect

• Your MySQL user name

Identity checking is performed using the three user table scope columns (Host, User, and Password). The server accepts the
connection only if the Host and User columns in some user table row match the client host name and user name and the client
supplies the password specified in that row. The rules for allowable Host and User values are given in Section 3.3, “Specifying
Account Names”.

If the User column value is non-blank, the user name in an incoming connection must match exactly. If the User value is blank, it
matches any user name. If the user table row that matches an incoming connection has a blank user name, the user is considered
to be an anonymous user with no name, not a user with the name that the client actually specified. This means that a blank user
name is used for all further access checking for the duration of the connection (that is, during Stage 2).

The MySQL Access Privilege System

28

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/5.1/en/create-user.html


The Password column can be blank. This is not a wildcard and does not mean that any password matches. It means that the user
must connect without specifying a password.

Non-blank Password values in the user table represent encrypted passwords. MySQL does not store passwords in plaintext
form for anyone to see. Rather, the password supplied by a user who is attempting to connect is encrypted (using the PASS-
WORD() function). The encrypted password then is used during the connection process when checking whether the password is
correct. (This is done without the encrypted password ever traveling over the connection.) See Section 4.1, “User Names and Pass-
words”.

From MySQL's point of view, the encrypted password is the real password, so you should never give anyone access to it. In partic-
ular, do not give non-administrative users read access to tables in the mysql database.

The following table shows how various combinations of Host and User values in the user table apply to incoming connections.

Host Value User Value Allowable Connections

'thomas.loc.gov' 'fred' fred, connecting from thomas.loc.gov

'thomas.loc.gov' '' Any user, connecting from thomas.loc.gov

'%' 'fred' fred, connecting from any host

'%' '' Any user, connecting from any host

'%.loc.gov' 'fred' fred, connecting from any host in the loc.gov domain

'x.y.%' 'fred' fred, connecting from x.y.net, x.y.com, x.y.edu, and
so on; this is probably not useful

'144.155.166.177' 'fred' fred, connecting from the host with IP address
144.155.166.177

'144.155.166.%' 'fred' fred, connecting from any host in the 144.155.166 class C
subnet

'144.155.166.0/255.255.255.0' 'fred' Same as previous example

It is possible for the client host name and user name of an incoming connection to match more than one row in the user table. The
preceding set of examples demonstrates this: Several of the entries shown match a connection from thomas.loc.gov by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this issue as follows:

• Whenever the server reads the user table into memory, it sorts the rows.

• When a client attempts to connect, the server looks through the rows in sorted order.

• The server uses the first row that matches the client host name and user name.

To see how this works, suppose that the user table looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-

When the server reads the table into memory, it orders the rows with the most-specific Host values first. Literal host names and IP
numbers are the most specific. (The specificity if a literal IP number is not affected by whether it has a netmask, so
192.168.1.13 and 192.168.1.0/255.255.255.0 are considered equally specific.) The pattern '%' means “any host”
and is least specific. Rows with the same Host value are ordered with the most-specific User values first (a blank User value
means “any user” and is least specific). For the user table just shown, the result after sorting looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...
+-----------+----------+-

When a client attempts to connect, the server looks through the sorted rows and uses the first match found. For a connection from

The MySQL Access Privilege System

29

http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password


localhost by jeffrey, two of the rows from the table match: the one with Host and User values of 'localhost' and
'', and the one with values of '%' and 'jeffrey'. The 'localhost' row appears first in sorted order, so that is the one the
server uses.

Here is another example. Suppose that the user table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| % | jeffrey | ...
| thomas.loc.gov | | ...
+----------------+----------+-

The sorted table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| thomas.loc.gov | | ...
| % | jeffrey | ...
+----------------+----------+-

A connection by jeffrey from thomas.loc.gov is matched by the first row, whereas a connection by jeffrey from any
host is matched by the second.

Note

It is a common misconception to think that, for a given user name, all rows that explicitly name that user are used first
when the server attempts to find a match for the connection. This is not true. The preceding example illustrates this,
where a connection from thomas.loc.gov by jeffrey is first matched not by the row containing 'jeffrey'
as the User column value, but by the row with no user name. As a result, jeffrey is authenticated as an anonym-
ous user, even though he specified a user name when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably are being authenticated as some
other account. To find out what account the server used to authenticate you, use the CURRENT_USER() function. (See Informa-
tion Functions.) It returns a value in user_name@host_name format that indicates the User and Host values from the match-
ing user table row. Suppose that jeffrey connects and issues the following query:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+

The result shown here indicates that the matching user table row had a blank User column value. In other words, the server is
treating jeffrey as an anonymous user.

Another way to diagnose authentication problems is to print out the user table and sort it by hand to see where the first match is
being made.

3.5. Access Control, Stage 2: Request Verification
After you establish a connection, the server enters Stage 2 of access control. For each request that you issue via that connection, the
server determines what operation you want to perform, then checks whether you have sufficient privileges to do so. This is where
the privilege columns in the grant tables come into play. These privileges can come from any of the user, db, host,
tables_priv, columns_priv, or procs_priv tables. (You may find it helpful to refer to Section 3.2, “Privilege System
Grant Tables”, which lists the columns present in each of the grant tables.)

The user table grants privileges that are assigned to you on a global basis and that apply no matter what the default database is.
For example, if the user table grants you the DELETE privilege, you can delete rows from any table in any database on the server
host! In other words, user table privileges are superuser privileges. It is wise to grant privileges in the user table only to super-
users such as database administrators. For other users, you should leave all privileges in the user table set to 'N' and grant priv-
ileges at more specific levels only. You can grant privileges for particular databases, tables, columns, or routines.

The db and host tables grant database-specific privileges. Values in the scope columns of these tables can take the following
forms:

• A blank User value in the db table matches the anonymous user. A non-blank value matches literally; there are no wildcards
in user names.

• The wildcard characters “%” and “_” can be used in the Host and Db columns of either table. These have the same meaning as

The MySQL Access Privilege System

30

http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html


for pattern-matching operations performed with the LIKE operator. If you want to use either character literally when granting
privileges, you must escape it with a backslash. For example, to include the underscore character (“_”) as part of a database
name, specify it as “\_” in the GRANT statement.

• A '%' Host value in the db table means “any host.” A blank Host value in the db table means “consult the host table for
further information” (a process that is described later in this section).

• A '%' or blank Host value in the host table means “any host.”

• A '%' or blank Db value in either table means “any database.”

The server reads the db and host tables into memory and sorts them at the same time that it reads the user table. The server
sorts the db table based on the Host, Db, and User scope columns, and sorts the host table based on the Host and Db scope
columns. As with the user table, sorting puts the most-specific values first and least-specific values last, and when the server
looks for matching entries, it uses the first match that it finds.

The tables_priv, columns_priv, and procs_priv tables grant table-specific, column-specific, and routine-specific priv-
ileges. Values in the scope columns of these tables can take the following forms:

• The wildcard characters “%” and “_” can be used in the Host column. These have the same meaning as for pattern-matching
operations performed with the LIKE operator.

• A '%' or blank Host value means “any host.”

• The Db, Table_name, Column_name, and Routine_name columns cannot contain wildcards or be blank.

The server sorts the tables_priv, columns_priv, and procs_priv tables based on the Host, Db, and User columns.
This is similar to db table sorting, but simpler because only the Host column can contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require administrative privileges such as
SHUTDOWN or RELOAD, the server checks only the user table row because that is the only table that specifies administrative priv-
ileges. The server grants access if the row allows the requested operation and denies access otherwise. For example, if you want to
execute mysqladmin shutdown but your user table row doesn't grant the SHUTDOWN privilege to you, the server denies ac-
cess without even checking the db or host tables. (They contain no Shutdown_priv column, so there is no need to do so.)

For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's global (superuser) privileges by
looking in the user table row. If the row allows the requested operation, access is granted. If the global privileges in the user ta-
ble are insufficient, the server determines the user's database-specific privileges by checking the db and host tables:

1. The server looks in the db table for a match on the Host, Db, and User columns. The Host and User columns are matched
to the connecting user's host name and MySQL user name. The Db column is matched to the database that the user wants to
access. If there is no row for the Host and User, access is denied.

2. If there is a matching db table row and its Host column is not blank, that row defines the user's database-specific privileges.

3. If the matching db table row's Host column is blank, it signifies that the host table enumerates which hosts should be al-
lowed access to the database. In this case, a further lookup is done in the host table to find a match on the Host and Db
columns. If no host table row matches, access is denied. If there is a match, the user's database-specific privileges are com-
puted as the intersection (not the union!) of the privileges in the db and host table entries; that is, the privileges that are 'Y'
in both entries. (This way you can grant general privileges in the db table row and then selectively restrict them on a host-
by-host basis using the host table entries.)

After determining the database-specific privileges granted by the db and host table entries, the server adds them to the global
privileges granted by the user table. If the result allows the requested operation, access is granted. Otherwise, the server success-
ively checks the user's table and column privileges in the tables_priv and columns_priv tables, adds those to the user's
privileges, and allows or denies access based on the result. For stored-routine operations, the server uses the procs_priv table
rather than tables_priv and columns_priv.

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be summarized like this:

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges
OR routine privileges

It may not be apparent why, if the global user row privileges are initially found to be insufficient for the requested operation, the

The MySQL Access Privilege System

31

http://dev.mysql.com/doc/refman/5.1/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/update.html


server adds those privileges to the database, table, and column privileges later. The reason is that a request might require more than
one type of privilege. For example, if you execute an INSERT INTO ... SELECT statement, you need both the INSERT and
the SELECT privileges. Your privileges might be such that the user table row grants one privilege and the db table row grants the
other. In this case, you have the necessary privileges to perform the request, but the server cannot tell that from either table by it-
self; the privileges granted by the entries in both tables must be combined.

The host table is not affected by the GRANT or REVOKE statements, so it is unused in most MySQL installations. If you modify it
directly, you can use it for some specialized purposes, such as to maintain a list of secure servers on the local network that are gran-
ted all privileges.

You can also use the host table to indicate hosts that are not secure. Suppose that you have a machine public.your.domain
that is located in a public area that you do not consider secure. You can enable access to all hosts on your network except that ma-
chine by using host table entries like this:

+--------------------+----+-
| Host | Db | ...
+--------------------+----+-
| public.your.domain | % | ... (all privileges set to 'N')
| %.your.domain | % | ... (all privileges set to 'Y')
+--------------------+----+-

3.6. When Privilege Changes Take Effect
When mysqld starts, it reads all grant table contents into memory. The in-memory tables become effective for access control at
that point.

If you modify the grant tables indirectly using account-management statements such as GRANT, REVOKE, or SET PASSWORD, the
server notices these changes and loads the grant tables into memory again immediately.

If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE, your changes have no effect on
privilege checking until you either restart the server or tell it to reload the tables. If you change the grant tables directly but forget to
reload them, your changes have no effect until you restart the server. This may leave you wondering why your changes do not seem
to make any difference!

To tell the sever to reload the grant tables, perform a flush-privileges operation. This can be done by issuing a FLUSH PRIV-
ILEGES statement or by executing a mysqladmin flush-privileges or mysqladmin reload command.

When the server reloads the grant tables, privileges for each existing client connection are affected as follows:

• Table and column privilege changes take effect with the client's next request.

• Database privilege changes take effect the next time the client executes a USE db_name statement.

Note

Client applications may cache the database name; thus, this effect may not be visible to them without actually chan-
ging to a different database or flushing the privileges.

• Global privileges and passwords are unaffected for a connected client. These changes take effect only for subsequent connec-
tions.

If the server is started with the --skip-grant-tables option, it does not read the grant tables or implement any access con-
trol. Anyone can connect and do anything. To cause a server thus started to read the tables and enable access checking, flush the
privileges.

3.7. Causes of Access-Denied Errors
If you encounter problems when you try to connect to the MySQL server, the following items describe some courses of action you
can take to correct the problem.

• Make sure that the server is running. If it is not, clients cannot connect to it. For example, if an attempt to connect to the server
fails with a message such as one of those following, one cause might be that the server is not running:

shell> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
shell> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)

The MySQL Access Privilege System

32

http://dev.mysql.com/doc/refman/5.1/en/insert-select.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/delete.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-grant-tables


• It might be that the server is running, but you are trying to connect using a TCP/IP port, named pipe, or Unix socket file differ-
ent from the one on which the server is listening. To correct this when you invoke a client program, specify a --port option
to indicate the proper port number, or a --socket option to indicate the proper named pipe or Unix socket file. To find out
where the socket file is, you can use this command:

shell> netstat -ln | grep mysql

• Make sure that the server has not been configured to ignore network connections or (if you are attempting to connect remotely)
that it has not been configured to listen only locally on its network interfaces. If the server was started with -
-skip-networking, it will not accept TCP/IP connections at all. If the server was started with -
-bind-address=127.0.0.1, it will listen for TCP/IP connections only locally on the loopback interface and will not ac-
cept remote connections.

• Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be configured on the basis of the ap-
plication being executed, or the port number used by MySQL for communication (3306 by default). Under Linux or Unix,
check your IP tables (or similar) configuration to ensure that the port has not been blocked. Under Windows, applications such
as ZoneAlarm or the Windows XP personal firewall may need to be configured not to block the MySQL port.

• The grant tables must be properly set up so that the server can use them for access control. For some distribution types (such as
binary distributions on Windows, or RPM distributions on Linux), the installation process initializes the mysql database con-
taining the grant tables. For distributions that do not do this, you must initialize the grant tables manually by running the
mysql_install_db script. For details, see Section 2.2, “Unix Post-Installation Procedures”.

To determine whether you need to initialize the grant tables, look for a mysql directory under the data directory. (The data dir-
ectory normally is named data or var and is located under your MySQL installation directory.) Make sure that you have a
file named user.MYD in the mysql database directory. If not, execute the mysql_install_db script. After running this
script and starting the server, test the initial privileges by executing this command:

shell> mysql -u root test

The server should let you connect without error.

• After a fresh installation, you should connect to the server and set up your users and their access permissions:

shell> mysql -u root mysql

The server should let you connect because the MySQL root user has no password initially. That is also a security risk, so set-
ting the password for the root accounts is something you should do while you're setting up your other MySQL accounts. For
instructions on setting the initial passwords, see Section 2.3, “Securing the Initial MySQL Accounts”.

MySQL Enterprise
The MySQL Enterprise Monitor enforces security-related best practices. For example, subscribers are aler-
ted whenever there is any account without a password. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

• If you have updated an existing MySQL installation to a newer version, did you run the mysql_upgrade script? If not, do so.
The structure of the grant tables changes occasionally when new capabilities are added, so after an upgrade you should always
make sure that your tables have the current structure. For instructions, see mysql_upgrade.

• If a client program receives the following error message when it tries to connect, it means that the server expects passwords in a
newer format than the client is capable of generating:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

For information on how to deal with this, see Section 4.6.3, “Password Hashing in MySQL”, and Client does not sup-
port authentication protocol.

• Remember that client programs use connection parameters specified in option files or environment variables. If a client pro-
gram seems to be sending incorrect default connection parameters when you have not specified them on the command line,
check any applicable option files and your environment. For example, if you get Access denied when you run a client
without any options, make sure that you have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the --no-defaults option. For example:

shell> mysqladmin --no-defaults -u root version

The option files that clients use are listed in Using Option Files. Environment variables are listed in Environment Variables.

The MySQL Access Privilege System

33

http://dev.mysql.com/doc/refman/5.1/en/connecting.html#option_general_port
http://dev.mysql.com/doc/refman/5.1/en/connecting.html#option_general_socket
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-networking
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-networking
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_bind-address
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_bind-address
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-tzinfo-to-sql.html#mysql-upgrade
http://dev.mysql.com/doc/refman/5.1/en/common-errors.html#old-client
http://dev.mysql.com/doc/refman/5.1/en/common-errors.html#old-client
http://dev.mysql.com/doc/refman/5.1/en/option-file-options.html#option_general_no-defaults
http://dev.mysql.com/doc/refman/5.1/en/option-files.html
http://dev.mysql.com/doc/refman/5.1/en/environment-variables.html


• If you get the following error, it means that you are using an incorrect root password:

shell> mysqladmin -u root -pxxxx ver
Access denied for user 'root'@'localhost' (using password: YES)

If the preceding error occurs even when you have not specified a password, it means that you have an incorrect password listed
in some option file. Try the --no-defaults option as described in the previous item.

For information on changing passwords, see Section 4.5, “Assigning Account Passwords”.

If you have lost or forgotten the root password, see How to Reset the Root Password.

• If you change a password by using SET PASSWORD, INSERT, or UPDATE, you must encrypt the password using the PASS-
WORD() function. If you do not use PASSWORD() for these statements, the password will not work. For example, the follow-
ing statement assigns a password, but fails to encrypt it, so the user is not able to connect afterward:

SET PASSWORD FOR 'abe'@'host_name' = 'eagle';

Instead, set the password like this:

SET PASSWORD FOR 'abe'@'host_name' = PASSWORD('eagle');

The PASSWORD() function is unnecessary when you specify a password using the CREATE USER or GRANT statements or
the mysqladmin password command. Each of those automatically uses PASSWORD() to encrypt the password. See Sec-
tion 4.5, “Assigning Account Passwords”, and CREATE USER Syntax.

• localhost is a synonym for your local host name, and is also the default host to which clients try to connect if you specify
no host explicitly.

To avoid this problem on such systems, you can use a --host=127.0.0.1 option to name the server host explicitly. This
will make a TCP/IP connection to the local mysqld server. You can also use TCP/IP by specifying a --host option that uses
the actual host name of the local host. In this case, the host name must be specified in a user table row on the server host, even
though you are running the client program on the same host as the server.

• The Access denied error message tells you who you are trying to log in as, the client host from which you are trying to
connect, and whether you were using a password. Normally, you should have one row in the user table that exactly matches
the host name and user name that were given in the error message. For example, if you get an error message that contains us-
ing password: NO, it means that you tried to log in without a password.

• If you get an Access denied error when trying to connect to the database with mysql -u user_name, you may have a
problem with the user table. Check this by executing mysql -u root mysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your client's host name and your MySQL user
name.

• If the following error occurs when you try to connect from a host other than the one on which the MySQL server is running, it
means that there is no row in the user table with a Host value that matches the client host:

Host ... is not allowed to connect to this MySQL server

You can fix this by setting up an account for the combination of client host name and user name that you are using when trying
to connect.

If you do not know the IP number or host name of the machine from which you are connecting, you should put a row with '%'
as the Host column value in the user table. After trying to connect from the client machine, use a SELECT USER() query
to see how you really did connect. Then change the '%' in the user table row to the actual host name that shows up in the log.
Otherwise, your system is left insecure because it allows connections from any host for the given user name.

On Linux, another reason that this error might occur is that you are using a binary MySQL version that is compiled with a dif-
ferent version of the glibc library than the one you are using. In this case, you should either upgrade your operating system or
glibc, or download a source distribution of MySQL version and compile it yourself. A source RPM is normally trivial to
compile and install, so this is not a big problem.

• If you specify a host name when trying to connect, but get an error message where the host name is not shown or is an IP num-
ber, it means that the MySQL server got an error when trying to resolve the IP number of the client host to a name:

shell> mysqladmin -u root -pxxxx -h some_hostname ver
Access denied for user 'root'@'' (using password: YES)

The MySQL Access Privilege System

34

http://dev.mysql.com/doc/refman/5.1/en/option-file-options.html#option_general_no-defaults
http://dev.mysql.com/doc/refman/5.1/en/administration-issues.html#resetting-permissions
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/connecting.html#option_general_host
http://dev.mysql.com/doc/refman/5.1/en/connecting.html#option_general_host


If you try to connect as root and get the following error, it means that you do not have a row in the user table with a User
column value of 'root' and that mysqld cannot resolve the host name for your client:

Access denied for user ''@'unknown'

These errors indicate a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the internal DNS host name
cache. See How MySQL Uses DNS.

Some permanent solutions are:

• Determine what is wrong with your DNS server and fix it.

• Specify IP numbers rather than host names in the MySQL grant tables.

• Put an entry for the client machine name in /etc/hosts on Unix or \windows\hosts on Windows.

• Start mysqld with the --skip-name-resolve option.

• Start mysqld with the --skip-host-cache option.

• On Unix, if you are running the server and the client on the same machine, connect to localhost. Unix connections to
localhost use a Unix socket file rather than TCP/IP.

• On Windows, if you are running the server and the client on the same machine and the server supports named pipe connec-
tions, connect to the host name . (period). Connections to . use a named pipe rather than TCP/IP.

• If mysql -u root test works but mysql -h your_hostname -u root test results in Access denied
(where your_hostname is the actual host name of the local host), you may not have the correct name for your host in the
user table. A common problem here is that the Host value in the user table row specifies an unqualified host name, but
your system's name resolution routines return a fully qualified domain name (or vice versa). For example, if you have an entry
with host 'pluto' in the user table, but your DNS tells MySQL that your host name is 'pluto.example.com', the
entry does not work. Try adding an entry to the user table that contains the IP number of your host as the Host column value.
(Alternatively, you could add an entry to the user table with a Host value that contains a wildcard; for example,
'pluto.%'. However, use of Host values ending with “%” is insecure and is not recommended!)

• If mysql -u user_name test works but mysql -u user_name other_db does not, you have not granted access
to the given user for the database named other_db.

• If mysql -u user_name works when executed on the server host, but mysql -h host_name -u user_name does
not work when executed on a remote client host, you have not enabled access to the server for the given user name from the re-
mote host.

• If you cannot figure out why you get Access denied, remove from the user table all entries that have Host values con-
taining wildcards (entries that contain '%' or '_' characters). A very common error is to insert a new entry with Host='%'
and User='some_user', thinking that this allows you to specify localhost to connect from the same machine. The reas-
on that this does not work is that the default privileges include an entry with Host='localhost' and User=''. Because
that entry has a Host value 'localhost' that is more specific than '%', it is used in preference to the new entry when con-
necting from localhost! The correct procedure is to insert a second entry with Host='localhost' and
User='some_user', or to delete the entry with Host='localhost' and User=''. After deleting the entry, remember
to issue a FLUSH PRIVILEGES statement to reload the grant tables. See also Section 3.4, “Access Control, Stage 1: Connec-
tion Verification”.

• If you are able to connect to the MySQL server, but get an Access denied message whenever you issue a SELECT ...
INTO OUTFILE or LOAD DATA INFILE statement, your entry in the user table does not have the FILE privilege en-
abled.

• If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE statements) and your changes
seem to be ignored, remember that you must execute a FLUSH PRIVILEGES statement or a mysqladmin flush-
privileges command to cause the server to reload the privilege tables. Otherwise, your changes have no effect until the
next time the server is restarted. Remember that after you change the root password with an UPDATE command, you will not
need to specify the new password until after you flush the privileges, because the server will not know you've changed the pass-
word yet!

• If your privileges seem to have changed in the middle of a session, it may be that a MySQL administrator has changed them.
Reloading the grant tables affects new client connections, but it also affects existing connections as indicated in Section 3.6,
“When Privilege Changes Take Effect”.

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to the server with mysql -u

The MySQL Access Privilege System

35

http://dev.mysql.com/doc/refman/5.1/en/dns.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-name-resolve
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-host-cache
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/delete.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/update.html


user_name db_name or mysql -u user_name -pyour_pass db_name. If you are able to connect using the
mysql client, the problem lies with your program, not with the access privileges. (There is no space between -p and the pass-
word; you can also use the --password=your_pass syntax to specify the password. If you use the -p or --password
option with no password value, MySQL prompts you for the password.)

• For testing purposes, start the mysqld server with the --skip-grant-tables option. Then you can change the MySQL
grant tables and use the mysqlaccess script to check whether your modifications have the desired effect. When you are sat-
isfied with your changes, execute mysqladmin flush-privileges to tell the mysqld server to reload the privileges.
This enables you to begin using the new grant table contents without stopping and restarting the server.

• If you get the following error, you may have a problem with the db or host table:

Access to database denied

If the entry selected from the db table has an empty value in the Host column, make sure that there are one or more corres-
ponding entries in the host table specifying which hosts the db table entry applies to. This problem occurs infrequently be-
cause the host table is rarely used.

• If everything else fails, start the mysqld server with a debugging option (for example, --debug=d,general,query).
This prints host and user information about attempted connections, as well as information about each command issued. See
MySQL Internals: Porting.

• If you have any other problems with the MySQL grant tables and feel you must post the problem to the mailing list, always
provide a dump of the MySQL grant tables. You can dump the tables with the mysqldump mysql command. To file a bug
report, see the instructions at How to Report Bugs or Problems. In some cases, you may need to restart mysqld with -
-skip-grant-tables to run mysqldump.

The MySQL Access Privilege System

36

http://dev.mysql.com/doc/refman/5.1/en/connecting.html#option_general_password
http://dev.mysql.com/doc/refman/5.1/en/connecting.html#option_general_password
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-grant-tables
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_debug
http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://dev.mysql.com/doc/refman/5.1/en/bug-reports.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-grant-tables
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-grant-tables


Chapter 4. MySQL User Account Management
This section describes how to set up accounts for clients of your MySQL server. It discusses the following topics:

• The meaning of account names and passwords as used in MySQL and how that compares to names and passwords used by your
operating system

• How to set up new accounts and remove existing accounts

• How to change passwords

• Guidelines for using passwords securely

• How to use secure connections with SSL

See also Account Management Statements, which describes the syntax and use for all user-management SQL statements.

4.1. User Names and Passwords
A MySQL account is defined in terms of a user name and the client host or hosts from which the user can connect to the server.
The account also has a password. There are several distinctions between the way user names and passwords are used by MySQL
and the way they are used by your operating system:

• User names, as used by MySQL for authentication purposes, have nothing to do with user names (login names) as used by Win-
dows or Unix. On Unix, most MySQL clients by default try to log in using the current Unix user name as the MySQL user
name, but that is for convenience only. The default can be overridden easily, because client programs allow any user name to be
specified with a -u or --user option. Because this means that anyone can attempt to connect to the server using any user
name, you cannot make a database secure in any way unless all MySQL accounts have passwords. Anyone who specifies a user
name for an account that has no password is able to connect successfully to the server.

• MySQL user names can be up to 16 characters long. Operating system user names, because they are completely unrelated to
MySQL user names, may be of a different maximum length. For example, Unix user names typically are limited to eight char-
acters.

Warning

The limit on MySQL user name length is hard-coded in the MySQL servers and clients, and trying to circumvent it by
modifying the definitions of the tables in the mysql database does not work.

You should never alter any of the tables in the mysql database in any manner whatsoever except by means of the
procedure that is described in mysql_upgrade. Attempting to redefine MySQL's system tables in any other fashion
results in undefined (and unsupported!) behavior.

• MySQL passwords have nothing to do with passwords for logging in to your operating system. There is no necessary connec-
tion between the password you use to log in to a Windows or Unix machine and the password you use to access the MySQL
server on that machine.

• MySQL encrypts passwords using its own algorithm. This encryption is the same as that implemented by the PASSWORD()
SQL function but differs from that used during the Unix login process. Unix password encryption is the same as that implemen-
ted by the ENCRYPT() SQL function. See the descriptions of the PASSWORD() and ENCRYPT() functions in Encryption
and Compression Functions.

From version 4.1 on, MySQL employs a stronger authentication method that has better password protection during the connec-
tion process than in earlier versions. It is secure even if TCP/IP packets are sniffed or the mysql database is captured. (In earli-
er versions, even though passwords are stored in encrypted form in the user table, knowledge of the encrypted password value
could be used to connect to the MySQL server.) Section 4.6.3, “Password Hashing in MySQL”, discusses password encryption
further.

When you install MySQL, the grant tables are populated with an initial set of accounts. These accounts have names and access
privileges that are described in Section 2.3, “Securing the Initial MySQL Accounts”, which also discusses how to assign passwords
to them. Thereafter, you normally set up, modify, and remove MySQL accounts using statements such as GRANT and REVOKE.
See Account Management Statements.

When you connect to a MySQL server with a command-line client, you should specify the user name and password for the account
that you want to use:

37

http://dev.mysql.com/doc/refman/5.1/en/account-management-sql.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-tzinfo-to-sql.html#mysql-upgrade
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_encrypt
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_encrypt
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html
http://dev.mysql.com/doc/refman/5.1/en/account-management-sql.html


shell> mysql --user=monty --password=guess db_name

If you prefer short options, the command looks like this:

shell> mysql -u monty -pguess db_name

There must be no space between the -p option and the following password value. For additional information about specifying user
names, passwords, and other connection parameters, see Connecting to the MySQL Server.

4.2. Adding User Accounts
You can create MySQL accounts in two ways:

• By using statements intended for creating accounts, such as CREATE USER or GRANT. These statements cause the server to
make appropriate modifications to the grant tables.

• By manipulating the MySQL grant tables directly with statements such as INSERT, UPDATE, or DELETE.

The preferred method is to use account-creation statements because they are more concise and less error-prone than manipulating
the grant tables directly. CREATE USER and GRANT are described in Account Management Statements.

Another option for creating accounts is to use one of several available third-party programs that offer capabilities for MySQL ac-
count administration. phpMyAdmin is one such program.

The following examples show how to use the mysql client program to set up new accounts. These examples assume that priv-
ileges have been set up according to the defaults described in Section 2.3, “Securing the Initial MySQL Accounts”. This means that
to make changes, you must connect to the MySQL server as the MySQL root user, and the root account must have the INSERT
privilege for the mysql database and the RELOAD administrative privilege.

As noted in the examples where appropriate, some of the statements will fail if the server's SQL mode has been set to enable certain
restrictions. In particular, strict mode (STRICT_TRANS_TABLES, STRICT_ALL_TABLES) and NO_AUTO_CREATE_USER
will prevent the server from accepting some of the statements. Workarounds are indicated for these cases. For more information
about SQL modes and their effect on grant table manipulation, see Server SQL Modes, and GRANT Syntax.

First, use the mysql program to connect to the server as the MySQL root user:

shell> mysql --user=root mysql

If you have assigned a password to the root account, you'll also need to supply a --password or -p option, both for this
mysql command and for those later in this section.

After connecting to the server as root, you can add new accounts. The following statements use GRANT to set up four new ac-
counts:

mysql> CREATE USER 'monty'@'localhost' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'localhost'

-> WITH GRANT OPTION;
mysql> CREATE USER 'monty'@'%' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'%'

-> WITH GRANT OPTION;
mysql> CREATE USER 'admin'@'localhost';
mysql> GRANT RELOAD,PROCESS ON *.* TO 'admin'@'localhost';
mysql> CREATE USER 'dummy'@'localhost';

The accounts created by these statements have the following properties:

• Two of the accounts have a user name of monty and a password of some_pass. Both accounts are superuser accounts with
full privileges to do anything. The 'monty'@'localhost' account can be used only when connecting from the local host.
The 'monty'@'%' account uses the '%' wildcard for the host part, so it can be used to connect from any host.

It is necessary to have both accounts for monty to be able to connect from anywhere as monty. Without the localhost ac-
count, the anonymous-user account for localhost that is created by mysql_install_db would take precedence when
monty connects from the local host. As a result, monty would be treated as an anonymous user. The reason for this is that the
anonymous-user account has a more specific Host column value than the 'monty'@'%' account and thus comes earlier in
the user table sort order. (user table sorting is discussed in Section 3.4, “Access Control, Stage 1: Connection Verification”.)

• The 'admin'@'localhost' account has no password. This account can be used only by admin to connect from the local
host. It is granted the RELOAD and PROCESS administrative privileges. These privileges allow the admin user to execute the

MySQL User Account Management

38

http://dev.mysql.com/doc/refman/5.1/en/connecting.html
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/delete.html
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/account-management-sql.html
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html#sqlmode_strict_trans_tables
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html#sqlmode_strict_all_tables
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html#sqlmode_no_auto_create_user
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html


mysqladmin reload, mysqladmin refresh, and mysqladmin flush-xxx commands, as well as mysqladmin
processlist . No privileges are granted for accessing any databases. You could add such privileges later by issuing addi-
tional GRANT statements.

• The 'dummy'@'localhost' account has no password. This account can be used only to connect from the local host. No
privileges are granted. It is assumed that you will grant specific privileges to the account later.

The statements that create accounts with no password will fail if the NO_AUTO_CREATE_USER SQL mode is enabled. To deal
with this, use an IDENTIFIED BY clause that specifies a non-empty password.

To check the privileges for an account, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+-----------------------------------------------------+
| Grants for admin@localhost |
+-----------------------------------------------------+
| GRANT RELOAD, PROCESS ON *.* TO 'admin'@'localhost' |
+-----------------------------------------------------+

As an alternative to CREATE USER and GRANT, you can create the same accounts directly by issuing INSERT statements and
then telling the server to reload the grant tables using FLUSH PRIVILEGES:

shell> mysql --user=root mysql
mysql> INSERT INTO user

-> VALUES('localhost','monty',PASSWORD('some_pass'),
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO user
-> VALUES('%','monty',PASSWORD('some_pass'),
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y',
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y',
-> '','','','',0,0,0,0);

mysql> INSERT INTO user SET Host='localhost',User='admin',
-> Reload_priv='Y', Process_priv='Y';

mysql> INSERT INTO user (Host,User,Password)
-> VALUES('localhost','dummy','');

mysql> FLUSH PRIVILEGES;

When you create accounts with INSERT, it is necessary to use FLUSH PRIVILEGES to tell the server to reload the grant tables.
Otherwise, the changes go unnoticed until you restart the server. With CREATE USER, FLUSH PRIVILEGES is unnecessary.

The reason for using the PASSWORD() function with INSERT is to encrypt the password. The CREATE USER statement encrypts
the password for you, so PASSWORD() is unnecessary.

The 'Y' values enable privileges for the accounts. Depending on your MySQL version, you may have to use a different number of
'Y' values in the first two INSERT statements. The INSERT statement for the admin account employs the more readable exten-
ded INSERT syntax using SET.

In the INSERT statement for the dummy account, only the Host, User, and Password columns in the user table row are as-
signed values. None of the privilege columns are set explicitly, so MySQL assigns them all the default value of 'N'. This is equi-
valent to what CREATE USER does.

If strict SQL mode is enabled, all columns that have no default value must have a value specified. In this case, INSERT statements
must explicitly specify values for the ssl_cipher, x509_issuer, and x509_subject columns.

To set up a superuser account, it is necessary only to create a user table entry with the privilege columns set to 'Y'. The user
table privileges are global, so no entries in any of the other grant tables are needed.

The next examples create three accounts and give them access to specific databases. Each of them has a user name of custom and
password of obscure.

To create the accounts with CREATE USER and GRANT, use the following statements:

shell> mysql --user=root mysql
mysql> CREATE USER 'custom'@'localhost' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

-> ON bankaccount.*
-> TO 'custom'@'localhost';

mysql> CREATE USER 'custom'@'host47.example.com' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

-> ON expenses.*
-> TO 'custom'@'host47.example.com';

mysql> CREATE USER 'custom'@'server.domain' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

-> ON customer.*
-> TO 'custom'@'server.domain';

The three accounts can be used as follows:

MySQL User Account Management

39

http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html#sqlmode_no_auto_create_user
http://dev.mysql.com/doc/refman/5.1/en/show-grants.html
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_ssl_cipher
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html


• The first account can access the bankaccount database, but only from the local host.

• The second account can access the expenses database, but only from the host host47.example.com.

• The third account can access the customer database, but only from the host server.domain.

To set up the custom accounts without GRANT, use INSERT statements as follows to modify the grant tables directly:

shell> mysql --user=root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('localhost','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('host47.example.com','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('server.domain','custom',PASSWORD('obscure'));
mysql> INSERT INTO db

-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('localhost','bankaccount','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('host47.example.com','expenses','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('server.domain','customer','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> FLUSH PRIVILEGES;

The first three INSERT statements add user table entries that allow the user custom to connect from the various hosts with the
given password, but grant no global privileges (all privileges are set to the default value of 'N'). The next three INSERT state-
ments add db table entries that grant privileges to custom for the bankaccount, expenses, and customer databases, but
only when accessed from the proper hosts. As usual when you modify the grant tables directly, you must tell the server to reload
them with FLUSH PRIVILEGES so that the privilege changes take effect.

To create a user who has access from all machines in a given domain (for example, mydomain.com), you can use the “%” wild-
card character in the host part of the account name:

mysql> CREATE USER 'myname'@'%.mydomain.com' IDENTIFIED BY 'mypass';

To do the same thing by modifying the grant tables directly, do this:

mysql> INSERT INTO user (Host,User,Password,...)
-> VALUES('%.mydomain.com','myname',PASSWORD('mypass'),...);

mysql> FLUSH PRIVILEGES;

4.3. Removing User Accounts
To remove an account, use the DROP USER statement, which is described in DROP USER Syntax.

4.4. Limiting Account Resources
One means of limiting use of MySQL server resources is to set the max_user_connections system variable to a nonzero
value. However, this limits only the number of simultaneous connections made using a single account, and not what a client can do
once connected. In addition, this method is strictly global, and does not allow for management of individual accounts. Both types of
control are of interest to many MySQL administrators, particularly those working for Internet Service Providers.

In MySQL 5.1, you can limit the following server resources for individual accounts:

• The number of queries that an account can issue per hour

• The number of updates that an account can issue per hour

• The number of times an account can connect to the server per hour

• The number of simultaneous connections to the server an account can have

Any statement that a client can issue counts against the query limit. Only statements that modify databases or tables count against
the update limit.

MySQL User Account Management

40

http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/drop-user.html
http://dev.mysql.com/doc/refman/5.1/en/drop-user.html
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_max_user_connections


An “account” in this context corresponds to a single row in the user table. That is, connections are assessed against the User and
Host values in the user table row that applies to the connection. Suppose that there is a row in the user table that has User and
Host values of usera and %.example.com, to allow usera to connect from any host in the example.com domain. In this
case, the server applies resource limits collectively to all connections by usera from any host in the example.com domain be-
cause all such connections use the same account.

Before MySQL 5.0.3, an “account” was assessed against the actual host from which a user connects. This older method accounting
may be selected by starting the server with the --old-style-user-limits option. In this case, if usera connects simultan-
eously from host1.example.com and host2.example.com, the server applies the account resource limits separately to
each connection. If usera connects again from host1.example.com, the server applies the limits for that connection together
with the existing connection from that host.

The server limits account resources based on the resource-related columns of the user table in the mysql database:
max_questions, max_updates, max_connections, and max_user_connections. If your user table does not have
these columns, it must be upgraded; see mysql_upgrade.

To set resource limits, use the GRANT statement and provide a WITH clause that names each resource to be limited. For example, to
create a new account that can access the customer database, but only in a limited fashion, issue these statements:

mysql> CREATE USER 'francis'@'localhost' IDENTIFIED BY 'frank';
mysql> GRANT ALL ON customer.* TO 'francis'@'localhost'

-> WITH MAX_QUERIES_PER_HOUR 20
-> MAX_UPDATES_PER_HOUR 10
-> MAX_CONNECTIONS_PER_HOUR 5
-> MAX_USER_CONNECTIONS 2;

The limit types need not all be named in the WITH clause, but those named can be present in any order. The value for each per-hour
limit should be an integer representing a count per hour. If the GRANT statement has no WITH clause, the limits are each set to the
default value of zero (that is, no limit). For MAX_USER_CONNECTIONS, the limit is an integer representing the maximum number
of simultaneous connections the account can make at any one time. If the limit is set to the default value of zero, the
max_user_connections system variable determines the number of simultaneous connections for the account.

To modify limits for an existing account, use a GRANT USAGE statement at the global level (ON *.*). The following statement
changes the query limit for francis to 100:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
-> WITH MAX_QUERIES_PER_HOUR 100;

This statement leaves the account's existing privileges unchanged and modifies only the limit values specified.

To remove an existing limit, set its value to zero. For example, to remove the limit on how many times per hour francis can
connect, use this statement:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
-> WITH MAX_CONNECTIONS_PER_HOUR 0;

Resource-use counting takes place when any account has a nonzero limit placed on its use of any of the resources.

As the server runs, it counts the number of times each account uses resources. If an account reaches its limit on number of connec-
tions within the last hour, further connections for the account are rejected until that hour is up. Similarly, if the account reaches its
limit on the number of queries or updates, further queries or updates are rejected until the hour is up. In all such cases, an appropri-
ate error message is issued.

Resource counting is done per account, not per client. For example, if your account has a query limit of 50, you cannot increase
your limit to 100 by making two simultaneous client connections to the server. Queries issued on both connections are counted to-
gether.

Queries for which results are served from the query cache do not count against the MAX_QUERIES_PER_HOUR limit.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a given account:

• To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement. The counts also can be re-
set by reloading the grant tables (for example, with a FLUSH PRIVILEGES statement or a mysqladmin reload com-
mand).

• The counts for an individual account can be set to zero by re-granting it any of its limits. To do this, use GRANT USAGE as de-
scribed earlier and specify a limit value equal to the value that the account currently has.

Counter resets do not affect the MAX_USER_CONNECTIONS limit.

MySQL User Account Management

41

http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-style-user-limits
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_max_connections
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_max_user_connections
http://dev.mysql.com/doc/refman/5.1/en/mysql-tzinfo-to-sql.html#mysql-upgrade
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_max_user_connections
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html


All counts begin at zero when the server starts; counts are not carried over through a restart.

For the MAX_USER_CONNECTIONS limit, an edge case can occur if the account currently has open the maximum number of con-
nections allowed to it: A disconnect followed quickly by a connect can result in an error (ER_TOO_MANY_USER_CONNECTIONS
or ER_USER_LIMIT_REACHED) if the server has not fully processed the disconnect by the time the connect occurs. When the
server finishes disconnect processing, another connection will once more be allowed.

4.5. Assigning Account Passwords
To assign a password when you create a new account with CREATE USER, include an IDENTIFIED BY clause:

mysql> CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'biscuit';

To assign or change a password for an existing account, one way is to issue a SET PASSWORD statement:

mysql> SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('biscuit');

Only users such as root that have update access to the mysql database can change the password for other users. If you are not
connected as an anonymous user, you can change your own password by omitting the FOR clause:

mysql> SET PASSWORD = PASSWORD('biscuit');

You can also use a GRANT USAGE statement at the global level (ON *.*) to assign a password to an account without affecting
the account's current privileges:

mysql> GRANT USAGE ON *.* TO 'jeffrey'@'localhost' IDENTIFIED BY 'biscuit';

Passwords can be assigned from the command line by using the mysqladmin command:

shell> mysqladmin -u user_name -h host_name password "newpwd"

The account for which this command resets the password is the one with a user table row that matches user_name in the User
column and the client host from which you connect in the Host column.

Although it is generally preferable to assign passwords using one of the preceding methods, you can also do so by modifying the
user table directly:

• To establish a password when creating a new account, provide a value for the Password column:

shell> mysql -u root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('localhost','jeffrey',PASSWORD('biscuit'));
mysql> FLUSH PRIVILEGES;

• To change the password for an existing account, use UPDATE to set the Password column value:

shell> mysql -u root mysql
mysql> UPDATE user SET Password = PASSWORD('bagel')

-> WHERE Host = 'localhost' AND User = 'francis';
mysql> FLUSH PRIVILEGES;

When you assign passwords using CREATE USER or GRANT with an IDENTIFIED BY clause or with the mysqladmin
password command, they take care of encrypting the password for you.

When you assign an account a non-empty password using SET PASSWORD, INSERT, or UPDATE, you must use the PASS-
WORD() function to encrypt the password. PASSWORD() is necessary because the user table stores passwords in encrypted
form, not as plaintext. If you forget that fact, you are likely to set passwords like this:

shell> mysql -u root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('localhost','jeffrey','biscuit');
mysql> FLUSH PRIVILEGES;

The result is that the literal value 'biscuit' is stored as the password in the user table, not the encrypted value. When jef-
frey attempts to connect to the server using this password, the value is encrypted and compared to the value stored in the user
table. However, the stored value is the literal string 'biscuit', so the comparison fails and the server rejects the connection:

shell> mysql -u jeffrey -pbiscuit test

MySQL User Account Management

42

http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password


Access denied

Note

PASSWORD() encryption differs from Unix password encryption. See Section 4.1, “User Names and Passwords”.

4.6. Password Security in MySQL
Passwords occur in several contexts within MySQL. The following sections provide guidelines that enable administrators and end
users to keep these passwords secure and avoid exposing them. There is also a discussion of how MySQL uses password hashing
internally.

4.6.1. Administrator Guidelines for Password Security
Database administrators should use the following guidelines to keep passwords secure.

MySQL stores passwords for user accounts in the mysql.user table. Access to this table should never be granted to any non-
administrative accounts.

Passwords can appear as plain text in SQL statements such as CREATE USER, GRANT, and SET PASSWORD. If these statements
are logged by the MySQL server, the passwords become available to anyone with access to the logs. This applies to the general
query log, the slow query log, and the binary log (see MySQL Server Logs). To guard against unwarranted exposure to log files,
they should be located in a directory that restricts access to only the server and the database administrator. If you log to tables in the
mysql database, access to the tables should never be granted to any non-administrative accounts.

Database backups that include tables or log files containing passwords should be protected using a restricted access mode.

4.6.2. End-User Guidelines for Password Security
MySQL users should use the following guidelines to keep passwords secure.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your password in a way that exposes it
to discovery by other users. The methods you can use to specify your password when you run client programs are listed here, along
with an assessment of the risks of each method. In short, the safest methods are to have the client program prompt for the password
or to specify the password in a properly protected option file.

• Use a -pyour_pass or --password=your_pass option on the command line. For example:

shell> mysql -u francis -pfrank db_name

This is convenient but insecure, because your password becomes visible to system status programs such as ps that may be in-
voked by other users to display command lines. MySQL clients typically overwrite the command-line password argument with
zeros during their initialization sequence. However, there is still a brief interval during which the value is visible. Also, on some
systems this overwriting strategy is ineffective and the password remains visible to ps. (SystemV Unix systems and perhaps
others are subject to this problem.)

If your operating environment is set up to display your current command in the title bar of your terminal window, the password
remains visible as long as the command is running, even if the command has scrolled out of view in the window content area.

• Use the -p or --password option on the command line with no password value specified. In this case, the client program so-
licits the password interactively:

shell> mysql -u francis -p db_name
Enter password: ********

The “*” characters indicate where you enter your password. The password is not displayed as you enter it.

It is more secure to enter your password this way than to specify it on the command line because it is not visible to other users.
However, this method of entering a password is suitable only for programs that you run interactively. If you want to invoke a
client from a script that runs non-interactively, there is no opportunity to enter the password from the keyboard. On some sys-
tems, you may even find that the first line of your script is read and interpreted (incorrectly) as your password.

• Store your password in an option file. For example, on Unix you can list your password in the [client] section of the
.my.cnf file in your home directory:

[client]
password=your_pass

MySQL User Account Management

43

http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/server-logs.html


To keep the password safe, the file should not be accessible to anyone but yourself. To ensure this, set the file access mode to
400 or 600. For example:

shell> chmod 600 .my.cnf

Using Option Files, discusses option files in more detail.

• Store your password in the MYSQL_PWD environment variable. See Environment Variables.

This method of specifying your MySQL password must be considered extremely insecure and should not be used. Some ver-
sions of ps include an option to display the environment of running processes. If you set MYSQL_PWD, your password is ex-
posed to any other user who runs ps. Even on systems without such a version of ps, it is unwise to assume that there are no
other methods by which users can examine process environments.

On Unix, the mysql client writes a record of executed statements to a history file (see mysql). By default, this file is named
.mysql_history and is created in your home directory. Passwords can appear as plain text in SQL statements such as CREATE
USER, GRANT, and SET PASSWORD, so if you use these statements, they are logged in the history file. To keep this file safe, use
a restrictive access mode, the same way as described earlier for the .my.cnf file.

4.6.3. Password Hashing in MySQL
MySQL user accounts are listed in the user table of the mysql database. Each MySQL account is assigned a password, although
what is stored in the Password column of the user table is not the plaintext version of the password, but a hash value computed
from it. Password hash values are computed by the PASSWORD() function.

MySQL uses passwords in two phases of client/server communication:

• When a client attempts to connect to the server, there is an initial authentication step in which the client must present a pass-
word that has a hash value matching the hash value stored in the user table for the account that the client wants to use.

• After the client connects, it can (if it has sufficient privileges) set or change the password hashes for accounts listed in the user
table. The client can do this by using the PASSWORD() function to generate a password hash, or by using the GRANT or SET
PASSWORD statements.

In other words, the server uses hash values during authentication when a client first attempts to connect. The server generates hash
values if a connected client invokes the PASSWORD() function or uses a GRANT or SET PASSWORD statement to set or change a
password.

The password hashing mechanism was updated in MySQL 4.1 to provide better security and to reduce the risk of passwords being
intercepted. However, this new mechanism is understood only by MySQL 4.1 (and newer) servers and clients, which can result in
some compatibility problems. A 4.1 or newer client can connect to a pre-4.1 server, because the client understands both the old and
new password hashing mechanisms. However, a pre-4.1 client that attempts to connect to a 4.1 or newer server may run into diffi-
culties. For example, a 3.23 mysql client that attempts to connect to a 5.1 server may fail with the following error message:

shell> mysql -h localhost -u root
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

Another common example of this phenomenon occurs for attempts to use the older PHP mysql extension after upgrading to
MySQL 4.1 or newer. (See Common Problems with MySQL and PHP.)

The following discussion describes the differences between the old and new password mechanisms, and what you should do if you
upgrade your server but need to maintain backward compatibility with pre-4.1 clients. Additional information can be found in
Client does not support authentication protocol. This information is of particular importance to PHP pro-
grammers migrating MySQL databases from version 4.0 or lower to version 4.1 or higher.

Note

This discussion contrasts 4.1 behavior with pre-4.1 behavior, but the 4.1 behavior described here actually begins with
4.1.1. MySQL 4.1.0 is an “odd” release because it has a slightly different mechanism than that implemented in 4.1.1
and up. Differences between 4.1.0 and more recent versions are described further in MySQL 5.0 Reference Manual.

Prior to MySQL 4.1, password hashes computed by the PASSWORD() function are 16 bytes long. Such hashes look like this:

mysql> SELECT PASSWORD('mypass');
+--------------------+
| PASSWORD('mypass') |

MySQL User Account Management

44

http://dev.mysql.com/doc/refman/5.1/en/option-files.html
http://dev.mysql.com/doc/refman/5.1/en/environment-variables.html
http://dev.mysql.com/doc/refman/5.1/en/mysql.html
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/create-user.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/apis-php-problems.html
http://dev.mysql.com/doc/refman/5.1/en/common-errors.html#old-client
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password


+--------------------+
| 6f8c114b58f2ce9e |
+--------------------+

The Password column of the user table (in which these hashes are stored) also is 16 bytes long before MySQL 4.1.

As of MySQL 4.1, the PASSWORD() function has been modified to produce a longer 41-byte hash value:

mysql> SELECT PASSWORD('mypass');
+-------------------------------------------+
| PASSWORD('mypass') |
+-------------------------------------------+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+-------------------------------------------+

Accordingly, the Password column in the user table also must be 41 bytes long to store these values:

• If you perform a new installation of MySQL 5.1, the Password column is made 41 bytes long automatically.

• Upgrading from MySQL 4.1 (4.1.1 or later in the 4.1 series) to MySQL 5.1 should not give rise to any issues in this regard be-
cause both versions use the same password hashing mechanism. If you wish to upgrade an older release of MySQL to version
5.1, you should upgrade to version 4.1 first, then upgrade the 4.1 installation to 5.1.

A widened Password column can store password hashes in both the old and new formats. The format of any given password hash
value can be determined two ways:

• The obvious difference is the length (16 bytes versus 41 bytes).

• A second difference is that password hashes in the new format always begin with a “*” character, whereas passwords in the old
format never do.

The longer password hash format has better cryptographic properties, and client authentication based on long hashes is more secure
than that based on the older short hashes.

The differences between short and long password hashes are relevant both for how the server uses passwords during authentication
and for how it generates password hashes for connected clients that perform password-changing operations.

The way in which the server uses password hashes during authentication is affected by the width of the Password column:

• If the column is short, only short-hash authentication is used.

• If the column is long, it can hold either short or long hashes, and the server can use either format:

• Pre-4.1 clients can connect, although because they know only about the old hashing mechanism, they can authenticate only
using accounts that have short hashes.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

Even for short-hash accounts, the authentication process is actually a bit more secure for 4.1 and later clients than for older clients.
In terms of security, the gradient from least to most secure is:

• Pre-4.1 client authenticating with short password hash

• 4.1 or later client authenticating with short password hash

• 4.1 or later client authenticating with long password hash

The way in which the server generates password hashes for connected clients is affected by the width of the Password column
and by the --old-passwords option. A 4.1 or later server generates long hashes only if certain conditions are met: The Pass-
word column must be wide enough to hold long values and the --old-passwords option must not be given. These conditions
apply as follows:

• The Password column must be wide enough to hold long hashes (41 bytes). If the column has not been updated and still has
the pre-4.1 width of 16 bytes, the server notices that long hashes cannot fit into it and generates only short hashes when a client
performs password-changing operations using PASSWORD(), GRANT, or SET PASSWORD. This is the behavior that occurs if

MySQL User Account Management

45

http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html


you have upgraded to 4.1 but have not yet run the mysql_upgrade program to widen the Password column.

• If the Password column is wide, it can store either short or long password hashes. In this case, PASSWORD(), GRANT, and
SET PASSWORD generate long hashes unless the server was started with the --old-passwords option. That option forces
the server to generate short password hashes instead.

The purpose of the --old-passwords option is to enable you to maintain backward compatibility with pre-4.1 clients under cir-
cumstances where the server would otherwise generate long password hashes. The option doesn't affect authentication (4.1 and
later clients can still use accounts that have long password hashes), but it does prevent creation of a long password hash in the
user table as the result of a password-changing operation. Were that to occur, the account no longer could be used by pre-4.1 cli-
ents. Without the --old-passwords option, the following undesirable scenario is possible:

• An old client connects to an account that has a short password hash.

• The client changes its own password. Without --old-passwords, this results in the account having a long password hash.

• The next time the old client attempts to connect to the account, it cannot, because the account has a long password hash that re-
quires the new hashing mechanism during authentication. (Once an account has a long password hash in the user table, only 4.1
and later clients can authenticate for it, because pre-4.1 clients do not understand long hashes.)

This scenario illustrates that, if you must support older pre-4.1 clients, it is dangerous to run a 4.1 or newer server without using the
--old-passwords option. By running the server with --old-passwords, password-changing operations do not generate
long password hashes and thus do not cause accounts to become inaccessible to older clients. (Those clients cannot inadvertently
lock themselves out by changing their password and ending up with a long password hash.)

The downside of the --old-passwords option is that any passwords you create or change use short hashes, even for 4.1 clients.
Thus, you lose the additional security provided by long password hashes. If you want to create an account that has a long hash (for
example, for use by 4.1 clients), you must do so while running the server without --old-passwords.

MySQL Enterprise
Subscribers to the MySQL Enterprise Monitor are automatically alerted whenever a server is running with
the --old-passwords option. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

The following scenarios are possible for running a 4.1 or later server:

Scenario 1: Short Password column in user table:

• Only short hashes can be stored in the Password column.

• The server uses only short hashes during client authentication.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT, or SET PASSWORD use short
hashes exclusively. Any change to an account's password results in that account having a short password hash.

• The --old-passwords option can be used but is superfluous because with a short Password column, the server generates
only short password hashes anyway.

Scenario 2: Long Password column; server not started with --old-passwords option:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only using accounts that have short hashes.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT, or SET PASSWORD use long
hashes exclusively. A change to an account's password results in that account having a long password hash.

As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short password hash to become inaccess-
ible to pre-4.1 clients. A change to such an account's password made via GRANT, PASSWORD(), or SET PASSWORD results in
the account being given a long password hash. From that point on, no pre-4.1 client can authenticate to that account until the client
upgrades to 4.1.

MySQL User Account Management

46

http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/set-password.html


To deal with this problem, you can change a password in a special way. For example, normally you use SET PASSWORD as fol-
lows to change an account password:

SET PASSWORD FOR 'some_user'@'some_host' = PASSWORD('mypass');

To change the password but create a short hash, use the OLD_PASSWORD() function instead:

SET PASSWORD FOR 'some_user'@'some_host' = OLD_PASSWORD('mypass');

OLD_PASSWORD() is useful for situations in which you explicitly want to generate a short hash.

Scenario 3: Long Password column; 4.1 or newer server started with --old-passwords option:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate for accounts that have short or long hashes (but note that it is possible to create long
hashes only when the server is started without --old-passwords).

• Pre-4.1 clients can authenticate only for accounts that have short hashes.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT, or SET PASSWORD use short
hashes exclusively. Any change to an account's password results in that account having a short password hash.

In this scenario, you cannot create accounts that have long password hashes, because the --old-passwords option prevents
generation of long hashes. Also, if you create an account with a long hash before using the --old-passwords option, changing
the account's password while --old-passwords is in effect results in the account being given a short password, causing it to
lose the security benefits of a longer hash.

The disadvantages for these scenarios may be summarized as follows:

In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.

In scenario 2, accounts with short hashes become inaccessible to pre-4.1 clients if you change their passwords without explicitly us-
ing OLD_PASSWORD().

In scenario 3, --old-passwords prevents accounts with short hashes from becoming inaccessible, but password-changing op-
erations cause accounts with long hashes to revert to short hashes, and you cannot change them back to long hashes while -
-old-passwords is in effect.

4.6.4. Implications of Password Hashing Changes in MySQL 4.1 for Applica-
tion Programs

An upgrade to MySQL version 4.1 or later can cause compatibility issues for applications that use PASSWORD() to generate pass-
words for their own purposes. Applications really should not do this, because PASSWORD() should be used only to manage pass-
words for MySQL accounts. But some applications use PASSWORD() for their own purposes anyway.

If you upgrade to 4.1 or later from a pre-4.1 version of MySQL and run the server under conditions where it generates long pass-
word hashes, an application using PASSWORD() for its own passwords breaks. The recommended course of action in such cases is
to modify the application to use another function, such as SHA1() or MD5(), to produce hashed values. If that is not possible, you
can use the OLD_PASSWORD() function, which is provided for generate short hashes in the old format. However, you should note
that OLD_PASSWORD() may one day no longer be supported.

If the server is running under circumstances where it generates short hashes, OLD_PASSWORD() is available but is equivalent to
PASSWORD().

PHP programmers migrating their MySQL databases from version 4.0 or lower to version 4.1 or higher should see MySQL PHP
API.

4.7. Using SSL for Secure Connections
MySQL supports secure (encrypted) connections between MySQL clients and the server using the Secure Sockets Layer (SSL) pro-
tocol. This section discusses how to use SSL connections. For information on how to require users to use SSL connections, see the
discussion of the REQUIRE clause of the GRANT statement in GRANT Syntax.

The standard configuration of MySQL is intended to be as fast as possible, so encrypted connections are not used by default. Doing
so would make the client/server protocol much slower. Encrypting data is a CPU-intensive operation that requires the computer to

MySQL User Account Management

47

http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_old-password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_old-password
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/set-password.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_old-password
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_sha1
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_md5
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_old-password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_old-password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_old-password
http://dev.mysql.com/doc/refman/5.1/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.1/en/apis-php.html
http://dev.mysql.com/doc/refman/5.1/en/apis-php.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html


do additional work and can delay other MySQL tasks. For applications that require the security provided by encrypted connections,
the extra computation is warranted.

MySQL allows encryption to be enabled on a per-connection basis. You can choose a normal unencrypted connection or a secure
encrypted SSL connection according the requirements of individual applications.

Secure connections are based on the OpenSSL API and are available through the MySQL C API. Replication uses the C API, so se-
cure connections can be used between master and slave servers.

Another way to connect securely is from within an SSH connection to the MySQL server host. For an example, see Section 4.8,
“Connecting to MySQL Remotely from Windows with SSH”.

4.7.1. Basic SSL Concepts
To understand how MySQL uses SSL, it is necessary to explain some basic SSL and X509 concepts. People who are familiar with
these can skip this part of the discussion.

By default, MySQL uses unencrypted connections between the client and the server. This means that someone with access to the
network could watch all your traffic and look at the data being sent or received. They could even change the data while it is in
transit between client and server. To improve security a little, you can compress client/server traffic by using the --compress
option when invoking client programs. However, this does not foil a determined attacker.

When you need to move information over a network in a secure fashion, an unencrypted connection is unacceptable. Encryption is
the way to make any kind of data unreadable. In fact, today's practice requires many additional security elements from encryption
algorithms. They should resist many kind of known attacks such as changing the order of encrypted messages or replaying data
twice.

SSL is a protocol that uses different encryption algorithms to ensure that data received over a public network can be trusted. It has
mechanisms to detect any data change, loss, or replay. SSL also incorporates algorithms that provide identity verification using the
X509 standard.

X509 makes it possible to identify someone on the Internet. It is most commonly used in e-commerce applications. In basic terms,
there should be some company called a “Certificate Authority” (or CA) that assigns electronic certificates to anyone who needs
them. Certificates rely on asymmetric encryption algorithms that have two encryption keys (a public key and a secret key). A certi-
ficate owner can show the certificate to another party as proof of identity. A certificate consists of its owner's public key. Any data
encrypted with this public key can be decrypted only using the corresponding secret key, which is held by the owner of the certific-
ate.

If you need more information about SSL, X509, or encryption, use your favorite Internet search engine to search for the keywords
in which you are interested.

4.7.2. Using SSL Connections
To use SSL connections between the MySQL server and client programs, your system must support either OpenSSL or yaSSL and
your version of MySQL must be built with SSL support.

To make it easier to use secure connections, MySQL is bundled with yaSSL. (MySQL and yaSSL employ the same licensing mod-
el, whereas OpenSSL uses an Apache-style license.) yaSSL support initially was available only for a few platforms, but now it is
available on all MySQL platforms supported by Sun Microsystems, Inc.

To get secure connections to work with MySQL and SSL, you must do the following:

1. If you are not using a binary (precompiled) version of MySQL that has been built with SSL support, and you are going to use
OpenSSL rather than the bundled yaSSL library, install OpenSSL if it has not already been installed. We have tested MySQL
with OpenSSL 0.9.6. To obtain OpenSSL, visit http://www.openssl.org.

2. If you are not using a binary (precompiled) version of MySQL that has been built with SSL support, configure a MySQL
source distribution to use SSL. When you configure MySQL, invoke the configure script like this:

shell> ./configure --with-ssl

That configures the distribution to use the bundled yaSSL library. To use OpenSSL instead, specify the --with-ssl option
with the path to the directory where the OpenSSL header files and libraries are located:

shell> ./configure --with-ssl=path

Before MySQL 5.1.11, you must use the appropriate option to select the SSL library that you want to use.

MySQL User Account Management

48

http://www.openssl.org


For yaSSL:

shell> ./configure --with-yassl

For OpenSSL:

shell> ./configure --with-openssl

Note that yaSSL support on Unix platforms requires that either /dev/urandom or /dev/random be available to retrieve
true random numbers. For additional information (especially regarding yaSSL on Solaris versions prior to 2.8 and HP-UX),
see Bug#13164.

3. Make sure that the user in the mysql database includes the SSL-related columns (beginning with ssl_ and x509_). If
your user table does not have these columns, it must be upgraded; see mysql_upgrade.

4. To check whether a server binary is compiled with SSL support, invoke it with the --ssl option. An error will occur if the
server does not support SSL:

shell> mysqld --ssl --help
060525 14:18:52 [ERROR] mysqld: unknown option '--ssl'

To check whether a running mysqld server supports SSL, examine the value of the have_ssl system variable (if you have
no have_ssl variable, check for have_openssl):

mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+

If the value is YES, the server supports SSL connections. If the value is DISABLED, the server supports SSL connections but
was not started with the appropriate --ssl-xxx options (described later in this section).

To enable SSL connections, the proper SSL-related options must be used (see Section 4.7.3, “SSL Command Options”).

To start the MySQL server so that it allows clients to connect via SSL, use the options that identify the key and certificate files the
server needs when establishing a secure connection:

shell> mysqld --ssl-ca=cacert.pem \
--ssl-cert=server-cert.pem \
--ssl-key=server-key.pem

• --ssl-ca identifies the Certificate Authority (CA) certificate.

• --ssl-cert identifies the server public key. This can be sent to the client and authenticated against the CA certificate that it
has.

• --ssl-key identifies the server private key.

To establish a secure connection to a MySQL server with SSL support, the options that a client must specify depend on the SSL re-
quirements of the user account that the client uses. (See the discussion of the REQUIRE clause in GRANT Syntax.)

If the account has no special SSL requirements or was created using a GRANT statement that includes the REQUIRE SSL option, a
client can connect securely by using just the --ssl-ca option:

shell> mysql --ssl-ca=cacert.pem

To require that a client certificate also be specified, create the account using the REQUIRE X509 option. Then the client must also
specify the proper client key and certificate files or the server will reject the connection:

shell> mysql --ssl-ca=cacert.pem \
--ssl-cert=client-cert.pem \
--ssl-key=client-key.pem

In other words, the options are similar to those used for the server. Note that the Certificate Authority certificate has to be the same.

MySQL User Account Management

49

http://bugs.mysql.com/13164
http://dev.mysql.com/doc/refman/5.1/en/mysql-tzinfo-to-sql.html#mysql-upgrade
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_have_ssl
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_have_ssl
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_have_openssl
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html


A client can determine whether the current connection with the server uses SSL by checking the value of the Ssl_cipher status
variable. The value of Ssl_cipher is non-empty if SSL is used, and empty otherwise. For example:

mysql> SHOW STATUS LIKE 'Ssl_cipher';
+---------------+--------------------+
| Variable_name | Value |
+---------------+--------------------+
| Ssl_cipher | DHE-RSA-AES256-SHA |
+---------------+--------------------+

For the mysql client, you can use the STATUS or \s command and check the SSL line:

mysql> \s
...
SSL: Not in use
...

Or:

mysql> \s
...
SSL: Cipher in use is DHE-RSA-AES256-SHA
...

To establish a secure connection from within an application program, use the mysql_ssl_set() C API function to set the ap-
propriate certificate options before calling mysql_real_connect(). See mysql_ssl_set(). After the connection is estab-
lished, you can use mysql_get_ssl_cipher() to determine whether SSL is in use. A non-NULL return value indicates a se-
cure connection and names the SSL cipher used for encryption. A NULL return value indicates that SSL is not being used. See
mysql_get_ssl_cipher().

4.7.3. SSL Command Options
The following list describes options that are used for specifying the use of SSL, certificate files, and key files. They can be given on
the command line or in an option file. These options are not available unless MySQL has been built with SSL support. See Sec-
tion 4.7.2, “Using SSL Connections”. (There are also --master-ssl* options that can be used for setting up a secure connec-
tion from a slave replication server to a master server; see Replication and Binary Logging Options and Variables.)

Table 4.1. mysqld SSL Option/Variable Summary

Name Cmd-
Line

Option
file

System
Var

Status
Var

Var
Scope

Dynamic

have_openssl Yes Global No

have_ssl Yes Global No

skip-ssl Yes Yes

ssl Yes Yes

ssl-ca Yes Yes Global No

- Variable: ssl_ca Yes Global No

ssl-capath Yes Yes Global No

- Variable: ssl_capath Yes Global No

ssl-cert Yes Yes Global No

- Variable: ssl_cert Yes Global No

ssl-cipher Yes Yes Global No

- Variable: ssl_cipher Yes Global No

ssl-key Yes Yes Global No

- Variable: ssl_key Yes Global No

ssl-verify-server-cert Yes Yes

• --ssl

For the server, this option specifies that the server allows SSL connections. For a client program, it allows the client to connect
to the server using SSL. This option is not sufficient in itself to cause an SSL connection to be used. You must also specify the
--ssl-ca option, and possibly the --ssl-cert and --ssl-key options.

MySQL User Account Management

50

http://dev.mysql.com/doc/refman/5.1/en/server-status-variables.html#statvar_Ssl_cipher
http://dev.mysql.com/doc/refman/5.1/en/server-status-variables.html#statvar_Ssl_cipher
http://dev.mysql.com/doc/refman/5.1/en/mysql-ssl-set.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-real-connect.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-ssl-set.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-get-ssl-cipher.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-get-ssl-cipher.html
http://dev.mysql.com/doc/refman/5.1/en/replication-options.html


This option is more often used in its opposite form to override any other SSL options and indicate that SSL should not be used.
To do this, specify the option as --skip-ssl or --ssl=0.

Note that use of --ssl does not require an SSL connection. For example, if the server or client is compiled without SSL sup-
port, a normal unencrypted connection is used.

The secure way to require use of an SSL connection is to create an account on the server that includes a REQUIRE SSL clause
in the GRANT statement. Then use that account to connect to the server, where both the server and the client have SSL support
enabled.

The REQUIRE clause allows other SSL-related restrictions as well. The description of REQUIRE in GRANT Syntax, provides
additional detail about which SSL command options may or must be specified by clients that connect using accounts that are
created using the various REQUIRE options.

• --ssl-ca=file_name

The path to a file that contains a list of trusted SSL CAs.

• --ssl-capath=directory_name

The path to a directory that contains trusted SSL CA certificates in PEM format.

• --ssl-cert=file_name

The name of the SSL certificate file to use for establishing a secure connection.

• --ssl-cipher=cipher_list

A list of allowable ciphers to use for SSL encryption. For greatest portability, cipher_list should be a list of one or more
cipher names, separated by colons. Examples:

--ssl-cipher=AES128-SHA
--ssl-cipher=DHE-RSA-AES256-SHA:AES128-SHA

This format is understood both by OpenSSL and yaSSL. OpenSSL supports a more flexible syntax for specifying ciphers, as
described in the OpenSSL documentation at http://www.openssl.org/docs/apps/ciphers.html. However, this extended syntax
will fail if used with a MySQL installation compiled against yaSSL.

If no cipher in the list is supported, SSL connections will not work.

• --ssl-key=file_name

The name of the SSL key file to use for establishing a secure connection.

• --ssl-verify-server-cert

This option is available for client programs only, not the server. It causes the server's Common Name value in the certificate
that the server sends to the client to be verified against the host name that the client uses for connecting to the server, and the
connection is rejected if there is a mismatch. This feature can be used to prevent man-in-the-middle attacks. Verification is dis-
abled by default. This option was added in MySQL 5.1.11.

As of MySQL 5.1.18, if you use SSL when establishing a client connection, you can tell the client not to authenticate the server
certificate by specifying neither --ssl-ca nor --ssl-capath. The server still verifies the client according to any applicable
requirements established via GRANT statements for the client, and it still uses any --ssl-ca/--ssl-capath values that were
passed to server at startup time.

4.7.4. Setting Up SSL Certificates for MySQL
This section demonstrates how to set up SSL certificate and key files for use by MySQL servers and clients. The first example
shows a simplified procedure such as you might use from the command line. The second shows a script that contains more detail.
The first two examples are intended for use on Unix and both use the openssl command that is part of OpenSSL. The third ex-
ample describes how to set up SSL files on Windows.

Following the third example, instructions are given for using the files to test SSL connections. You can also use the files as de-
scribed in Section 4.7.2, “Using SSL Connections”.

Example 1: Creating SSL files from the command line on Unix

The following example shows a set of commands to create MySQL server and client certificate and key files. You will need to re-

MySQL User Account Management

51

http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://www.openssl.org/docs/apps/ciphers.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html


spond to several prompts by the openssl commands. For testing, you can press Enter to all prompts. For production use, you
should provide non-empty responses.

# Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts
# Create CA certificate
shell> openssl genrsa 2048 > ca-key.pem
shell> openssl req -new -x509 -nodes -days 1000 \

-key ca-key.pem > ca-cert.pem
# Create server certificate
shell> openssl req -newkey rsa:2048 -days 1000 \

-nodes -keyout server-key.pem > server-req.pem
shell> openssl x509 -req -in server-req.pem -days 1000 \

-CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 > server-cert.pem
# Create client certificate
shell> openssl req -newkey rsa:2048 -days 1000 \

-nodes -keyout client-key.pem > client-req.pem
shell> openssl x509 -req -in client-req.pem -days 1000 \

-CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 > client-cert.pem

Example 2: Creating SSL files using a script on Unix

Here is an example script that shows how to set up SSL certificates for MySQL:

DIR=`pwd`/openssl
PRIV=$DIR/private
mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf
# Create necessary files: $database, $serial and $new_certs_dir
# directory (optional)
touch $DIR/index.txt
echo "01" > $DIR/serial
#
# Generation of Certificate Authority(CA)
#
openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/cacert.pem \

-days 3600 -config $DIR/openssl.cnf
# Sample output:
# Using configuration from /home/monty/openssl/openssl.cnf
# Generating a 1024 bit RSA private key
# ................++++++
# .........++++++
# writing new private key to '/home/monty/openssl/private/cakey.pem'
# Enter PEM pass phrase:
# Verifying password - Enter PEM pass phrase:
# -----
# You are about to be asked to enter information that will be
# incorporated into your certificate request.
# What you are about to enter is what is called a Distinguished Name
# or a DN.
# There are quite a few fields but you can leave some blank
# For some fields there will be a default value,
# If you enter '.', the field will be left blank.
# -----
# Country Name (2 letter code) [AU]:FI
# State or Province Name (full name) [Some-State]:.
# Locality Name (eg, city) []:
# Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
# Organizational Unit Name (eg, section) []:
# Common Name (eg, YOUR name) []:MySQL admin
# Email Address []:
#
# Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \

$DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf
# Sample output:
# Using configuration from /home/monty/openssl/openssl.cnf
# Generating a 1024 bit RSA private key
# ..++++++
# ..........++++++
# writing new private key to '/home/monty/openssl/server-key.pem'
# Enter PEM pass phrase:
# Verifying password - Enter PEM pass phrase:
# -----
# You are about to be asked to enter information that will be
# incorporated into your certificate request.
# What you are about to enter is what is called a Distinguished Name
# or a DN.
# There are quite a few fields but you can leave some blank
# For some fields there will be a default value,
# If you enter '.', the field will be left blank.
# -----
# Country Name (2 letter code) [AU]:FI
# State or Province Name (full name) [Some-State]:.
# Locality Name (eg, city) []:
# Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
# Organizational Unit Name (eg, section) []:
# Common Name (eg, YOUR name) []:MySQL server
# Email Address []:
#

MySQL User Account Management

52



# Please enter the following 'extra' attributes
# to be sent with your certificate request
# A challenge password []:
# An optional company name []:
#
# Remove the passphrase from the key
#
openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem
#
# Sign server cert
#
openssl ca -policy policy_anything -out $DIR/server-cert.pem \

-config $DIR/openssl.cnf -infiles $DIR/server-req.pem
# Sample output:
# Using configuration from /home/monty/openssl/openssl.cnf
# Enter PEM pass phrase:
# Check that the request matches the signature
# Signature ok
# The Subjects Distinguished Name is as follows
# countryName :PRINTABLE:'FI'
# organizationName :PRINTABLE:'MySQL AB'
# commonName :PRINTABLE:'MySQL admin'
# Certificate is to be certified until Sep 13 14:22:46 2003 GMT
# (365 days)
# Sign the certificate? [y/n]:y
#
#
# 1 out of 1 certificate requests certified, commit? [y/n]y
# Write out database with 1 new entries
# Data Base Updated
#
# Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \

$DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf
# Sample output:
# Using configuration from /home/monty/openssl/openssl.cnf
# Generating a 1024 bit RSA private key
# .....................................++++++
# .............................................++++++
# writing new private key to '/home/monty/openssl/client-key.pem'
# Enter PEM pass phrase:
# Verifying password - Enter PEM pass phrase:
# -----
# You are about to be asked to enter information that will be
# incorporated into your certificate request.
# What you are about to enter is what is called a Distinguished Name
# or a DN.
# There are quite a few fields but you can leave some blank
# For some fields there will be a default value,
# If you enter '.', the field will be left blank.
# -----
# Country Name (2 letter code) [AU]:FI
# State or Province Name (full name) [Some-State]:.
# Locality Name (eg, city) []:
# Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
# Organizational Unit Name (eg, section) []:
# Common Name (eg, YOUR name) []:MySQL user
# Email Address []:
#
# Please enter the following 'extra' attributes
# to be sent with your certificate request
# A challenge password []:
# An optional company name []:
#
# Remove the passphrase from the key
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem
#
# Sign client cert
#
openssl ca -policy policy_anything -out $DIR/client-cert.pem \

-config $DIR/openssl.cnf -infiles $DIR/client-req.pem
# Sample output:
# Using configuration from /home/monty/openssl/openssl.cnf
# Enter PEM pass phrase:
# Check that the request matches the signature
# Signature ok
# The Subjects Distinguished Name is as follows
# countryName :PRINTABLE:'FI'
# organizationName :PRINTABLE:'MySQL AB'
# commonName :PRINTABLE:'MySQL user'
# Certificate is to be certified until Sep 13 16:45:17 2003 GMT
# (365 days)
# Sign the certificate? [y/n]:y
#
#
# 1 out of 1 certificate requests certified, commit? [y/n]y
# Write out database with 1 new entries
# Data Base Updated
#
# Create a my.cnf file that you can use to test the certificates
#
cnf=""
cnf="$cnf [client]"
cnf="$cnf ssl-ca=$DIR/cacert.pem"
cnf="$cnf ssl-cert=$DIR/client-cert.pem"

MySQL User Account Management

53



cnf="$cnf ssl-key=$DIR/client-key.pem"
cnf="$cnf [mysqld]"
cnf="$cnf ssl-ca=$DIR/cacert.pem"
cnf="$cnf ssl-cert=$DIR/server-cert.pem"
cnf="$cnf ssl-key=$DIR/server-key.pem"
echo $cnf | replace " " '
' > $DIR/my.cnf

Example 3: Creating SSL files on Windows

Download OpenSSL for Windows. An overview of available packages can be seen here: ht-
tp://www.slproweb.com/products/Win32OpenSSL.html

Choose of the following packages, depending on your architecture (32-bit or 64-bit):

• Win32 OpenSSL v0.9.8j Light, available at: http://www.slproweb.com/download/Win32OpenSSL_Light-0_9_8j.exe

• Win64 OpenSSL v0.9.8j Light, available at: http://www.slproweb.com/download/Win64OpenSSL_Light-0_9_8j.exe

if a message occurs during setup indicating '...critical component is missing: Microsoft Visual C++
2008 Redistributables', cancel the setup and download one of the following packages as well, again depending on your
architecture (32-bit or 64-bit):

• Visual C++ 2008 Redistributables (x86), available at: ht-
tp://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF“isplaylang=en

• Visual C++ 2008 Redistributables (x64), available at: ht-
tp://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6“isplaylang=en

After installing the additional package, restart the OpenSSL setup.

During installation, leave the default C:\OpenSSL as the install path, and also leave the default option 'Copy OpenSSL DLL
files to the Windows system directory' selected.

When the installation has finished, add C:\OpenSSL\bin to the Windows System Path variable of your server:

• On the Windows desktop, right-click on the My Computer icon, and select Properties.

• Next select the Advanced tab from the SYSTEM PROPERTIES menu that appears, and click the ENVIRONMENT VARIABLES button.

• Under SYSTEM VARIABLES, select Path, and then click the EDIT button. The EDIT SYSTEM VARIABLE dialogue should appear.

• Add ';C:\OpenSSL\bin' to the end (notice the semicolon).

• Press OK 3 times.

• Check that OpenSSL was correctly integrated into the Path variable by opening a new command console
(Start>Run>cmd.exe) and verifying that OpenSSL is available:

Microsoft Windows [Version ...]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.
C:\Windows\system32>cd \
C:\>openssl
OpenSSL> exit <<< If you see the OpenSSL prompt, installation was successful.
C:\>

Depending on your version of Windows, the preceding instructions might be slightly different.

After OpenSSL has been installed, use the instructions from Example 1 (shown earlier in this section), with the following changes:

• Change the follow Unix commands:

# Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts

On Windows, use these commands instead:

MySQL User Account Management

54

http://www.slproweb.com/products/Win32OpenSSL.html
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.slproweb.com/download/Win32OpenSSL_Light-0_9_8j.exe
http://www.slproweb.com/download/Win64OpenSSL_Light-0_9_8j.exe
http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF?isplaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF?isplaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6?isplaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6?isplaylang=en


# Create clean environment
shell> md c:\newcerts
shell> cd c:\newcerts

• When a '\' character is shown at the end of a command line, this '\' character must be removed and the command lines
entered all on a single line.

• For references to my.cnf option files, substitute my.ini instead.

Testing SSL connections

To test SSL connections, start the server as follows, where $DIR is the path name to the directory where the sample my.cnf op-
tion file is located:

shell> mysqld --defaults-file=$DIR/my.cnf &

Then invoke a client program using the same option file:

shell> mysql --defaults-file=$DIR/my.cnf

If you have a MySQL source distribution, you can also test your setup by modifying the preceding my.cnf file to refer to the
demonstration certificate and key files in the mysql-test/std_data directory of the distribution.

4.8. Connecting to MySQL Remotely from Windows with SSH
This section describes how to get a secure connection to a remote MySQL server with SSH. The information was provided by Dav-
id Carlson <dcarlson@mplcomm.com>.

1. Install an SSH client on your Windows machine. As a user, the best non-free one I have found is from SecureCRT from ht-
tp://www.vandyke.com/. Another option is f-secure from http://www.f-secure.com/. You can also find some free ones on
Google at http://directory.google.com/Top/Computers/Internet/Protocols/SSH/Clients/Windows/.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set userid=your_userid to
log in to your server. This userid value might not be the same as the user name of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_host: yourmysqlserver-
name_or_ip, remote_port: 3306 ) or a local forward (Set port: 3306, host: localhost, remote port:
3306).

4. Save everything, otherwise you will have to redo it the next time.

5. Log in to your server with the SSH session you just created.

6. On your Windows machine, start some ODBC application (such as Access).

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally do, except type in
localhost for the MySQL host server, not yourmysqlservername.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

4.9. Auditing MySQL Account Activity
Applications can use the following guidelines to perform auditing that ties database activity to MySQL accounts.

MySQL accounts correspond to rows in the mysql.user table. When a client connects successfully, the server authenticates the
client to a particular row in this table. The User and Host column values in this row uniquely identify the account and correspond
to the 'user_name'@'host_name' format in which account names are written in SQL statements.

The account used to authenticate a client determines which privileges the client has. Normally, the CURRENT_USER() function
can be invoked to determine which account this is for the client user. Its value is constructed from the User and Host columns of
the user table row for the account.

However, there are circumstances under which the CURRENT_USER() value corresponds not to the client user but to a different
account. This occurs in contexts when privilege checking is not based the client's account:

MySQL User Account Management

55

http://www.vandyke.com/
http://www.vandyke.com/
http://www.f-secure.com/
http://directory.google.com/Top/Computers/Internet/Protocols/SSH/Clients/Windows/
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_current-user


• Stored routines (procedures and functions) defined with the SQL SECURITY DEFINER characteristic

• Views defined with the SQL SECURITY DEFINER characteristic (as of MySQL 5.1.12)

• Triggers and events

In those contexts, privilege checking is done against the DEFINER account and CURRENT_USER() refers to that account, not to
the account for the client who invoked the stored routine or view or who caused the trigger to activate. To determine the invoking
user, you can call the USER() function, which returns a value indicating the actual user name provided by the client and the host
from which the client connected. However, this value does not necessarily correspond directly to an account in the user table, be-
cause the USER() value never contains wildcards, whereas account values (as returned by CURRENT_USER()) may contain user
name and host name wildcards.

For example, a blank user name matches any user, so an account of ''@'localhost' enables clients to connect as an anonym-
ous user from the local host with any user name. If this case, if a client connects as user1 from the local host, USER() and CUR-
RENT_USER() return different values:

mysql> SELECT USER(), CURRENT_USER();
+-----------------+----------------+
| USER() | CURRENT_USER() |
+-----------------+----------------+
| user1@localhost | @localhost |
+-----------------+----------------+

The host name part of an account can contain wildcards, too. If the host name contains a '%' or '_' pattern character or uses net-
mask notation, the account can be used for clients connecting from multiple hosts and the CURRENT_USER() value will not indic-
ate which one. For example, the account 'user2'@'%.example.com' can be used by user2 to connect from any host in the
example.com domain. If user2 connects from remote.example.com, USER() and CURRENT_USER() return different
values:

mysql> SELECT USER(), CURRENT_USER();
+--------------------------+---------------------+
| USER() | CURRENT_USER() |
+--------------------------+---------------------+
| user2@remote.example.com | user2@%.example.com |
+--------------------------+---------------------+

If an application must invoke USER() for user auditing (for example, if it does auditing from within triggers) but must also be able
to associate the USER() value with an account in the user table, it is necessary to avoid accounts that contain wildcards in the
User or Host column. Specifically, do not allow User to be empty (which creates an anonymous-user account), and do not allow
pattern characters or netmask notation in Host values. All accounts must have a non-empty User value and literal Host value.

With respect to the previous examples, the ''@'localhost' and 'user2'@'%.example.com' accounts should be
changed not to use wildcards:

RENAME USER ''@'localhost' TO 'user1'@'localhost';
RENAME USER 'user2'@'%.example.com' TO 'user2'@'remote.example.com';

If user2 must be able to connect from several hosts in the example.com domain, there should be a separate account for each
host.

To extract the user name or host name part from a CURRENT_USER() or USER() value, use the SUBSTRING() function:

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',1);
+---------------------------------------+
| SUBSTRING_INDEX(CURRENT_USER(),'@',1) |
+---------------------------------------+
| user1 |
+---------------------------------------+
mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',-1);
+----------------------------------------+
| SUBSTRING_INDEX(CURRENT_USER(),'@',-1) |
+----------------------------------------+
| localhost |
+----------------------------------------+

MySQL User Account Management

56

http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.1/en/string-functions.html#function_substring


Chapter 5. Backup and Recovery
It is important to back up your databases in case problems occur so that you can recover your data and be up and running again.
MySQL offers a variety of backup strategies from which you can choose to select whatever methods best suit the requirements for
your installation.

Briefly summarized, backup concepts with which you should be familiar include the following:

• Logical versus physical backups

• Online versus offline backups

• Local versus remote backups

• Snapshot backups

• Full versus incremental backups

• Point-in-time recovery

• Backup scheduling, compression, and encryption

• Table maintenance

More generally, the following discussion amplifies on the properties of different backup methods.

• Logical versus physical (raw) backups. Logical backups save information represented as logical database structure (CREATE
DATABASE, CREATE TABLE statements) and content (INSERT statements or delimited-text files). Physical backups consist
of raw copies of the directories and files that store database contents.

Logical backup methods have these characteristics:

• The backup is done by going through the MySQL server to obtain database structure and content information.

• Backup is slower than physical methods because the server must access database information, convert it to logical format,
and send it to the backup program.

• Output is larger than for physical backup, particularly when saved in text format.

• Backup and restore granularity is available at the server level (all databases), database level (all tables in a particular data-
base), or table level. This is true regardless of storage engine.

• The backup does not include log or configuration files, or other database-related files that are not part of databases.

• Backups stored in logical format are machine independent and highly portable.

• Logical backups are performed with the MySQL server running (the server is not taken offline).

• Logical backup tools include the mysqldump program and the SELECT ... INTO OUTFILE statement. These work
for any storage engine, even MEMORY.

For restore, SQL-format dump files can be processed using the mysql client. To load delimited-text files, use the LOAD
DATA INFILE statement or the mysqlimport client.

Physical backup methods have these characteristics:

• The backup consists of exact copies of database directories and files. Typically this is a copy of all or part of the MySQL
data directory. Data from MEMORY tables cannot be backed up this way because their contents are not stored on disk.

• Physical backup methods are faster than logical because they involve only file copying without conversion.

• Output is more compact than for logical backup.

• Backup and restore granularity extends from the level of the entire data directory down to the level of individual files. This
may or may not provide for table-level granularity, depending on storage engine. (Each MyISAM table corresponds
uniquely to a set of files, but an InnoDB table shares file storage with other InnoDB tables.)

• In addition to databases, the backup can include any related files such as log or configuration files.

57

http://dev.mysql.com/doc/refman/5.1/en/create-database.html
http://dev.mysql.com/doc/refman/5.1/en/create-database.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html


• Backups are portable only to other machines that have identical or similar hardware characteristics.

• Backups can be performed while the MySQL server is not running. If the server is running, it is necessary to perform appro-
priate locking so that the server does not change database contents during the backup.

• Physical backup tools include file system-level commands (such as cp, scp, tar, rsync), mysqlhotcopy for MyISAM
tables, ibbackup for InnoDB tables, or START BACKUP for NDB tables.

For restore, files copied at the file system level or with mysqlhotcopy can be copied back to their original locations with
file system commands; ibback restores InnoDB tables, and ndb_restore restores NDB tables.

• Online versus offline backups. Online backups take place while the MySQL server is running so that the database information
can be obtained from the server. Offline backups take place while the server is stopped. (This distinction can also be described
as “hot” versus “cold” backups; a “warm” backup is one where the server remains running but locked against modifying data
while you access database files externally.)

Online backup methods have these characteristics:

• Less intrusive to other clients, which can connect to the MySQL server during the backup and may be able to access data
depending on what operations they need to perform.

• Care must be taken to impose appropriate locking so that data modifications do not take place that compromise backup in-
tegrity.

Offline backup methods have these characteristics:

• Affects clients adversely because the server is unavailable during backup.

• Simpler backup procedure because there is no possibility of interference from client activity.

• Local versus remote backups. A local backup is performed on the same host where the MySQL server runs, whereas a remote
backup is initiated from a different host.

• mysqldump can connect to local or remote servers. For SQL output (CREATE and INSERT statements), local or remote
dumps can be done and generate output on the client. For delimited-text output (with the --tab option), data files are cre-
ated on the server host.

• mysqlhotcopy performs only local backups: It connects to the server to lock it against data modifications and then cop-
ies local table files.

• SELECT ... INTO OUTFILE can be initiated from a remote client host, but the output file is created on the server host.

• Physical backup methods typically are initiated locally on the MySQL server host so that the server can be taken offline, al-
though the destination for file copies might be remote.

• Snapshot backups. Some file system implementations enable “snapshots” to be taken. These provide logical copies of the file
system at a given point in time, without having to physically copy the entire file system. (For example, the implementation may
use copy-on-write techniques so that only parts of the file system modified after the snapshot time need be copied.) MySQL it-
self does not provide the capability for taking file system snapshots. It is available through third-party solutions such as Veritas
or LVM.

• Full versus incremental backups. A full backup includes all data managed by a MySQL server at a given point in time. An in-
cremental backup consists of the changes made to the data since the full backup. MySQL has different ways to perform full
backups, such as those described in previous items. Incremental backups are made possible by enabling the server's binary log,
which the server uses to record data changes.

• Point-in-time recovery. One use for the binary log is to achieve point-in-time recovery. This is done by recovering first from
the backup files to restore the server to its state when the backup was made, and then by re-executing changes in subsequently
written binary log files to redo data modifications up to the desired point in time.

• Backup scheduling, compression, and encryption. Backup scheduling is valuable for automating backup procedures. Com-
pression of backup output reduces space requirements, and encryption of the output provides better security against unauthor-
ized access of backed-up data. MySQL itself does not provide these capabilities. ibbackup can compress InnoDB backups,
and compression or encryption of backup output can be achieved using file system utilities. Other third-party solutions may be
available.

• Table maintenance. Data integrity can be compromised if tables become corrupt. MySQL provides programs for checking
tables and repairing them should problems be found. These programs apply primarily to MyISAM tables. See Section 5.4,
“Table Maintenance and Crash Recovery”.

Backup and Recovery

58

http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/mysqldump.html#option_mysqldump_tab
http://dev.mysql.com/doc/refman/5.1/en/select.html


Additional resources

Resources related to backup or to maintaining data availability include the following:

• A forum dedicated to backup issues is available at http://forums.mysql.com/list.php?93.

• The syntax of the SQL statements described here is given in SQL Statement Syntax.

• Details for mysqldump, mysqlhotcopy, and other MySQL backup programs can be found in MySQL Programs.

• For additional information about InnoDB backup procedures, see Backing Up and Recovering an InnoDB Database.

• Replication enables you to maintain identical data on multiple servers. This has several benefits, such as allowing client load to
be distributed over servers, availability of data even if a given server is taken offline or fails, and the ability to make backups
using a slave server without affecting the master. See Replication.

• MySQL Cluster provides a high-availability, high-redundancy version of MySQL adapted for the distributed computing envir-
onment. See MySQL Cluster NDB 6.X/7.X. For information specifically about MySQL Cluster backup, see Online Backup of
MySQL Cluster.

• Distributed Replicated Block Device (DRBD) is another high-availability solution. It works by replicating a block device from
a primary server to a secondary server at the block level. See High Availability and Scalability

5.1. Database Backups
This section summarizes some general methods for making backups.

Making Backups by Copying Files

MyISAM tables are stored as files, so it is easy to do a backup by copying files. To get a consistent backup, do a LOCK TABLES on
the relevant tables, followed by FLUSH TABLES for the tables. See LOCK TABLES and UNLOCK TABLES Syntax, and FLUSH
Syntax. You need only a read lock; this allows other clients to continue to query the tables while you are making a copy of the files
in the database directory. The FLUSH TABLES statement is needed to ensure that the all active index pages are written to disk be-
fore you start the backup.

Making Delimited-Text File Backups

To create a text file containing a table's data, you can use SELECT * INTO OUTFILE 'file_name' FROM tbl_name.
The file is created on the MySQL server host, not the client host. For this statement, the output file cannot already exist because al-
lowing files to be overwritten would constitute a security risk. See SELECT Syntax. This method works for any kind of data file,
but saves only table data, not the table structure.

To reload the output file, use LOAD DATA INFILE or mysqlimport.

Making Backups with mysqldump or mysqlhotcopy

Another technique for backing up a database is to use the mysqldump program or the mysqlhotcopy script. mysqldump is
more general because it can back up all kinds of tables. mysqlhotcopy works only with some storage engines. (See mysql-
dump, and mysqlhotcopy.)

Create a full backup of your database:

shell> mysqldump --tab=/path/to/some/dir --opt db_name

Or:

shell> mysqlhotcopy db_name /path/to/some/dir

You can also create a binary backup simply by copying all table files (*.frm, *.MYD, and *.MYI files), as long as the server isn't
updating anything. The mysqlhotcopy script uses this method. (But note that these methods do not work if your database con-
tains InnoDB tables. InnoDB does not necessarily store table contents in database directories, and mysqlhotcopy works only
for MyISAM and ISAM tables.)

For InnoDB tables, it is possible to perform an online backup that takes no locks on tables; see mysqldump.

Using the Binary Log to Enable Incremental Backups

MySQL supports incremental backups: You must start the server with the --log-bin option to enable binary logging; see The

Backup and Recovery

59

http://forums.mysql.com/list.php?93
http://dev.mysql.com/doc/refman/5.1/en/sql-syntax.html
http://dev.mysql.com/doc/refman/5.1/en/programs.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-backup.html
http://dev.mysql.com/doc/refman/5.1/en/replication.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-backup.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-backup.html
http://dev.mysql.com/doc/refman/5.1/en/ha-overview.html
http://dev.mysql.com/doc/refman/5.1/en/lock-tables.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/lock-tables.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/mysqlcheck.html#mysqldump
http://dev.mysql.com/doc/refman/5.1/en/mysqlcheck.html#mysqldump
http://dev.mysql.com/doc/refman/5.1/en/mysqldumpslow.html#mysqlhotcopy
http://dev.mysql.com/doc/refman/5.1/en/mysqlcheck.html#mysqldump
http://dev.mysql.com/doc/refman/5.1/en/replication-options-binary-log.html#option_mysqld_log-bin


Binary Log. The binary log files provide you with the information you need to replicate changes to the database that are made sub-
sequent to the point at which you performed a backup. At the moment you want to make an incremental backup (containing all
changes that happened since the last full or incremental backup), you should rotate the binary log by using FLUSH LOGS. This
done, you need to copy to the backup location all binary logs which range from the one of the moment of the last full or increment-
al backup to the last but one. These binary logs are the incremental backup; at restore time, you apply them as explained in Sec-
tion 5.3, “Point-in-Time Recovery”. The next time you do a full backup, you should also rotate the binary log using FLUSH LOGS,
mysqldump --flush-logs, or mysqlhotcopy --flushlog. See mysqldump, and mysqlhotcopy.

Backing Up Replication Slaves

If your MySQL server is a slave replication server, then regardless of the backup method you choose, you should also back up the
master.info and relay-log.info files when you back up your slave's data. These files are always needed to resume rep-
lication after you restore the slave's data. If your slave is subject to replicating LOAD DATA INFILE commands, you should also
back up any SQL_LOAD-* files that may exist in the directory specified by the --slave-load-tmpdir option. (This location
defaults to the value of the tmpdir system variable if not specified.) The slave needs these files to resume replication of any inter-
rupted LOAD DATA INFILE operations.

MySQL Enterprise
The MySQL Enterprise Monitor provides numerous advisors that issue immediate warnings should replica-
tion issues arise. For more information, see http://www.mysql.com/products/enterprise/advisors.html.

If you have performance problems with your master server while making backups, one strategy that can help is to set up replication
and perform backups on the slave rather than on the master. See Replication.

Recovering Corrupt Tables

If you have to restore MyISAM tables that have become corrupt, try to recover them using REPAIR TABLE or myisamchk -r
first. That should work in 99.9% of all cases. If myisamchk fails, try the following procedure. It is assumed that you have enabled
binary logging by starting MySQL with the --log-bin option.

1. Restore the original mysqldump backup, or binary backup.

2. Execute the following command to re-run the updates in the binary logs:

shell> mysqlbinlog binlog.[0-9]* | mysql

In some cases, you may want to re-run only certain binary logs, from certain positions (usually you want to re-run all binary
logs from the date of the restored backup, excepting possibly some incorrect statements). See Section 5.3, “Point-in-Time Re-
covery”.

Making Backups Using a File System Snapshot

If you are using a Veritas file system, you can make a backup like this:

1. From a client program, execute FLUSH TABLES WITH READ LOCK.

2. From another shell, execute mount vxfs snapshot.

3. From the first client, execute UNLOCK TABLES.

4. Copy files from the snapshot.

5. Unmount the snapshot.

5.2. Example Backup and Recovery Strategy
This section discusses a procedure for performing backups that allows you to recover data after several types of crashes:

• Operating system crash

• Power failure

• File system crash

• Hardware problem (hard drive, motherboard, and so forth)

Backup and Recovery

60

http://dev.mysql.com/doc/refman/5.1/en/binary-log.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/mysqlcheck.html#mysqldump
http://dev.mysql.com/doc/refman/5.1/en/mysqldumpslow.html#mysqlhotcopy
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/replication-options-slave.html#option_mysqld_slave-load-tmpdir
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/5.1/en/replication.html
http://dev.mysql.com/doc/refman/5.1/en/repair-table.html
http://dev.mysql.com/doc/refman/5.1/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/lock-tables.html


The example commands do not include options such as --user and --password for the mysqldump and mysql programs.
You should include such options as necessary so that the MySQL server allows you to connect to it.

We assume that data is stored in the InnoDB storage engine, which has support for transactions and automatic crash recovery. We
also assume that the MySQL server is under load at the time of the crash. If it were not, no recovery would ever be needed.

For cases of operating system crashes or power failures, we can assume that MySQL's disk data is available after a restart. The In-
noDB data files might not contain consistent data due to the crash, but InnoDB reads its logs and finds in them the list of pending
committed and non-committed transactions that have not been flushed to the data files. InnoDB automatically rolls back those
transactions that were not committed, and flushes to its data files those that were committed. Information about this recovery pro-
cess is conveyed to the user through the MySQL error log. The following is an example log excerpt:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

For the cases of file system crashes or hardware problems, we can assume that the MySQL disk data is not available after a restart.
This means that MySQL fails to start successfully because some blocks of disk data are no longer readable. In this case, it is neces-
sary to reformat the disk, install a new one, or otherwise correct the underlying problem. Then it is necessary to recover our
MySQL data from backups, which means that we must already have made backups. To make sure that is the case, we should design
a backup policy.

5.2.1. Backup Policy
We all know that backups must be scheduled periodically. A full backup (a snapshot of the data at a point in time) can be done in
MySQL with several tools. For example, InnoDB Hot Backup provides online non-blocking physical backup of the InnoDB
data files, and mysqldump provides online logical backup. This discussion uses mysqldump.

MySQL Enterprise
For expert advice on backups and replication, subscribe to the MySQL Enterprise Monitor. For more in-
formation, see http://www.mysql.com/products/enterprise/advisors.html.

Assume that we make a backup on Sunday at 1 p.m., when load is low. The following command makes a full backup of all our
InnoDB tables in all databases:

shell> mysqldump --single-transaction --all-databases > backup_sunday_1_PM.sql

This backup acquires a global read lock on all tables (using FLUSH TABLES WITH READ LOCK) at the beginning of the dump.
As soon as this lock has been acquired, the binary log coordinates are read and the lock is released. If long updating statements are
running when the FLUSH statement is issued, the MySQL server may get stalled until those statements finish. After that, the dump
becomes lock-free and does not disturb reads and writes on the tables.

We assumed earlier that our tables are InnoDB tables, so --single-transaction uses a consistent read and guarantees that
data seen by mysqldump does not change. (Changes made by other clients to InnoDB tables are not seen by the mysqldump
process.) If we do also have other types of tables, we must assume that they are not changed during the backup. For example, for
the MyISAM tables in the mysql database, we must assume that no administrative changes are being made to MySQL accounts
during the backup.

The resulting .sql file produced by mysqldump contains a set of SQL INSERT statements that can be used to reload the
dumped tables at a later time.

Full backups are necessary, but they are not always convenient. They produce large backup files and take time to generate. They
are not optimal in the sense that each successive full backup includes all data, even that part that has not changed since the previous
full backup. After we have made the initial full backup, it is more efficient to make incremental backups. They are smaller and take
less time to produce. The tradeoff is that, at recovery time, you cannot restore your data just by reloading the full backup. You must
also process the incremental backups to recover the incremental changes.

Backup and Recovery

61

http://dev.mysql.com/doc/refman/5.1/en/connecting.html#option_general_user
http://dev.mysql.com/doc/refman/5.1/en/connecting.html#option_general_password
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/mysqldump.html#option_mysqldump_single-transaction
http://dev.mysql.com/doc/refman/5.1/en/insert.html


To make incremental backups, we need to save the incremental changes. The MySQL server should always be started with the -
-log-bin option so that it stores these changes in a file while it updates data. This option enables binary logging, so that the serv-
er writes each SQL statement that updates data into a file called a MySQL binary log. Looking at the data directory of a MySQL
server that was started with the --log-bin option and that has been running for some days, we find these MySQL binary log
files:

-rw-rw---- 1 guilhem guilhem 1277324 Nov 10 23:59 gbichot2-bin.000001
-rw-rw---- 1 guilhem guilhem 4 Nov 10 23:59 gbichot2-bin.000002
-rw-rw---- 1 guilhem guilhem 79 Nov 11 11:06 gbichot2-bin.000003
-rw-rw---- 1 guilhem guilhem 508 Nov 11 11:08 gbichot2-bin.000004
-rw-rw---- 1 guilhem guilhem 220047446 Nov 12 16:47 gbichot2-bin.000005
-rw-rw---- 1 guilhem guilhem 998412 Nov 14 10:08 gbichot2-bin.000006
-rw-rw---- 1 guilhem guilhem 361 Nov 14 10:07 gbichot2-bin.index

Each time it restarts, the MySQL server creates a new binary log file using the next number in the sequence. While the server is
running, you can also tell it to close the current binary log file and begin a new one manually by issuing a FLUSH LOGS SQL
statement or with a mysqladmin flush-logs command. mysqldump also has an option to flush the logs. The .index file
in the data directory contains the list of all MySQL binary logs in the directory. This file is used for replication.

The MySQL binary logs are important for recovery because they form the set of incremental backups. If you make sure to flush the
logs when you make your full backup, then any binary log files created afterward contain all the data changes made since the
backup. Let's modify the previous mysqldump command a bit so that it flushes the MySQL binary logs at the moment of the full
backup, and so that the dump file contains the name of the new current binary log:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
--all-databases > backup_sunday_1_PM.sql

After executing this command, the data directory contains a new binary log file, gbichot2-bin.000007. The resulting .sql
file includes these lines:

-- Position to start replication or point-in-time recovery from
-- CHANGE MASTER TO MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;

Because the mysqldump command made a full backup, those lines mean two things:

• The .sql file contains all changes made before any changes written to the gbichot2-bin.000007 binary log file or new-
er.

• All data changes logged after the backup are not present in the .sql, but are present in the gbichot2-bin.000007 binary
log file or newer.

On Monday at 1 p.m., we can create an incremental backup by flushing the logs to begin a new binary log file. For example, ex-
ecuting a mysqladmin flush-logs command creates gbichot2-bin.000008. All changes between the Sunday 1 p.m.
full backup and Monday 1 p.m. will be in the gbichot2-bin.000007 file. This incremental backup is important, so it is a
good idea to copy it to a safe place. (For example, back it up on tape or DVD, or copy it to another machine.) On Tuesday at 1 p.m.,
execute another mysqladmin flush-logs command. All changes between Monday 1 p.m. and Tuesday 1 p.m. will be in the
gbichot2-bin.000008 file (which also should be copied somewhere safe).

The MySQL binary logs take up disk space. To free up space, purge them from time to time. One way to do this is by deleting the
binary logs that are no longer needed, such as when we make a full backup:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
--all-databases --delete-master-logs > backup_sunday_1_PM.sql

Note

Deleting the MySQL binary logs with mysqldump --delete-master-logs can be dangerous if your server is
a replication master server, because slave servers might not yet fully have processed the contents of the binary log.
The description for the PURGE BINARY LOGS statement explains what should be verified before deleting the
MySQL binary logs. See PURGE BINARY LOGS Syntax.

5.2.2. Using Backups for Recovery
Now, suppose that we have a catastrophic crash on Wednesday at 8 a.m. that requires recovery from backups. To recover, first we
restore the last full backup we have (the one from Sunday 1 p.m.). The full backup file is just a set of SQL statements, so restoring
it is very easy:

shell> mysql < backup_sunday_1_PM.sql

Backup and Recovery

62

http://dev.mysql.com/doc/refman/5.1/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.1/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.1/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/purge-binary-logs.html
http://dev.mysql.com/doc/refman/5.1/en/purge-binary-logs.html


At this point, the data is restored to its state as of Sunday 1 p.m.. To restore the changes made since then, we must use the incre-
mental backups; that is, the gbichot2-bin.000007 and gbichot2-bin.000008 binary log files. Fetch the files if neces-
sary from where they were backed up, and then process their contents like this:

shell> mysqlbinlog gbichot2-bin.000007 gbichot2-bin.000008 | mysql

We now have recovered the data to its state as of Tuesday 1 p.m., but still are missing the changes from that date to the date of the
crash. To not lose them, we would have needed to have the MySQL server store its MySQL binary logs into a safe location (RAID
disks, SAN, ...) different from the place where it stores its data files, so that these logs were not on the destroyed disk. (That is, we
can start the server with a --log-bin option that specifies a location on a different physical device from the one on which the
data directory resides. That way, the logs are safe even if the device containing the directory is lost.) If we had done this, we would
have the gbichot2-bin.000009 file at hand, and we could apply it using mysqlbinlog and mysql to restore the most re-
cent data changes with no loss up to the moment of the crash.

5.2.3. Backup Strategy Summary
In case of an operating system crash or power failure, InnoDB itself does all the job of recovering data. But to make sure that you
can sleep well, observe the following guidelines:

• Always run the MySQL server with the --log-bin option, or even --log-bin=log_name, where the log file name is
located on some safe media different from the drive on which the data directory is located. If you have such safe media, this
technique can also be good for disk load balancing (which results in a performance improvement).

• Make periodic full backups, using the mysqldump command shown earlier in Section 5.2.1, “Backup Policy”, that makes an
online, non-blocking backup.

• Make periodic incremental backups by flushing the logs with FLUSH LOGS or mysqladmin flush-logs.

5.3. Point-in-Time Recovery
If a MySQL server was started with the --log-bin option to enable binary logging, you can use the mysqlbinlog utility to
recover data from the binary log files, starting from a specified point in time (for example, since your last backup) until the present
or another specified point in time. For information on enabling the binary log and using mysqlbinlog, see The Binary Log, and
mysqlbinlog.

MySQL Enterprise
For maximum data recovery, the MySQL Enterprise Monitor advises subscribers to synchronize to disk at
each write. For more information, see http://www.mysql.com/products/enterprise/advisors.html.

To restore data from a binary log, you must know the location and name of the current binary log file. By default, the server creates
binary log files in the data directory, but a path name can be specified with the --log-bin option to place the files in a different
location. Typically the option is given in an option file (that is, my.cnf or my.ini, depending on your system). It can also be
given on the command line when the server is started. To determine the name of the current binary log file, issue the following
statement:

mysql> SHOW MASTER STATUS

If you prefer, you can execute the following command from the command line instead:

shell> mysql -u root -p -E -e "SHOW MASTER STATUS"

Enter the root password for your server when mysql prompts you for it.

To view the contents of a binary log, use mysqlbinlog. See mysqlbinlog.

5.3.1. Specifying Times for Recovery
To indicate the start and end times for recovery, specify the --start-datetime and --stop-datetime options for
mysqlbinlog, in DATETIME format. As an example, suppose that exactly at 10:00 a.m. on April 20, 2005 an SQL statement
was executed that deleted a large table. To restore the table and data, you could restore the previous night's backup, and then ex-
ecute the following command:

shell> mysqlbinlog --stop-datetime="2005-04-20 9:59:59" \
/var/log/mysql/bin.123456 | mysql -u root -p

Backup and Recovery

63

http://dev.mysql.com/doc/refman/5.1/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.1/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.1/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.1/en/binary-log.html
http://dev.mysql.com/doc/refman/5.1/en/mysqlaccess.html#mysqlbinlog
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/5.1/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.1/en/mysqlaccess.html#mysqlbinlog
http://dev.mysql.com/doc/refman/5.1/en/mysqlbinlog.html#option_mysqlbinlog_start-datetime
http://dev.mysql.com/doc/refman/5.1/en/mysqlbinlog.html#option_mysqlbinlog_stop-datetime
http://dev.mysql.com/doc/refman/5.1/en/datetime.html


This command recovers all of the data up until the date and time given by the --stop-datetime option. If you did not detect
the erroneous SQL statement that was entered until hours later, you will probably also want to recover the activity that occurred af-
terward. Based on this, you could run mysqlbinlog again with a start date and time, like so:

shell> mysqlbinlog --start-datetime="2005-04-20 10:01:00" \
/var/log/mysql/bin.123456 | mysql -u root -p

In this command, the SQL statements logged from 10:01 a.m. on will be re-executed. The combination of restoring of the previous
night's dump file and the two mysqlbinlog commands restores everything up until one second before 10:00 a.m. and everything
from 10:01 a.m. on. You should examine the log to be sure of the exact times to specify for the commands. To display the log file
contents without executing them, use this command:

shell> mysqlbinlog /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

Then open the file with a text editor to examine it.

5.3.2. Specifying Positions for Recovery
Instead of specifying dates and times, the --start-position and --stop-position options for mysqlbinlog can be
used for specifying log positions. They work the same as the start and stop date options, except that you specify log position num-
bers rather than dates. Using positions may enable you to be more precise about which part of the log to recover, especially if many
transactions occurred around the same time as a damaging SQL statement. To determine the position numbers, run mysqlbinlog
for a range of times near the time when the unwanted transaction was executed, but redirect the results to a text file for examina-
tion. This can be done like so:

shell> mysqlbinlog --start-datetime="2005-04-20 9:55:00" \
--stop-datetime="2005-04-20 10:05:00" \
/var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

This command creates a small text file in the /tmp directory that contains the SQL statements around the time that the deleterious
SQL statement was executed. Open this file with a text editor and look for the statement that you don't want to repeat. Determine
the positions in the binary log for stopping and resuming the recovery and make note of them. Positions are labeled as log_pos
followed by a number. After restoring the previous backup file, use the position numbers to process the binary log file. For ex-
ample, you would use commands something like these:

shell> mysqlbinlog --stop-position="368312" /var/log/mysql/bin.123456 \
| mysql -u root -p

shell> mysqlbinlog --start-position="368315" /var/log/mysql/bin.123456 \
| mysql -u root -p

The first command recovers all the transactions up until the stop position given. The second command recovers all transactions
from the starting position given until the end of the binary log. Because the output of mysqlbinlog includes SET TIMESTAMP
statements before each SQL statement recorded, the recovered data and related MySQL logs will reflect the original times at which
the transactions were executed.

5.4. Table Maintenance and Crash Recovery
This section discusses how to use myisamchk to check or repair MyISAM tables (tables that have .MYD and .MYI files for stor-
ing data and indexes). For general myisamchk background, see myisamchk.

You can use myisamchk to get information about your database tables or to check, repair, or optimize them. The following sec-
tions describe how to perform these operations and how to set up a table maintenance schedule.

Even though table repair with myisamchk is quite secure, it is always a good idea to make a backup before doing a repair or any
maintenance operation that could make a lot of changes to a table.

myisamchk operations that affect indexes can cause FULLTEXT indexes to be rebuilt with full-text parameters that are incompat-
ible with the values used by the MySQL server. To avoid this problem, follow the guidelines in myisamchk General Options.

In many cases, you may find it simpler to do MyISAM table maintenance using the SQL statements that perform operations that
myisamchk can do:

• To check or repair MyISAM tables, use CHECK TABLE or REPAIR TABLE.

• To optimize MyISAM tables, use OPTIMIZE TABLE.

• To analyze MyISAM tables, use ANALYZE TABLE.

Backup and Recovery

64

http://dev.mysql.com/doc/refman/5.1/en/mysqlbinlog.html#option_mysqlbinlog_stop-datetime
http://dev.mysql.com/doc/refman/5.1/en/mysqlbinlog.html#option_mysqlbinlog_start-position
http://dev.mysql.com/doc/refman/5.1/en/mysqlbinlog.html#option_mysqlbinlog_stop-position
http://dev.mysql.com/doc/refman/5.1/en/myisam-ftdump.html#myisamchk
http://dev.mysql.com/doc/refman/5.1/en/myisamchk.html#myisamchk-general-options
http://dev.mysql.com/doc/refman/5.1/en/check-table.html
http://dev.mysql.com/doc/refman/5.1/en/repair-table.html
http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.1/en/analyze-table.html


These statements can be used directly or by means of the mysqlcheck client program. One advantage of these statements over
myisamchk is that the server does all the work. With myisamchk, you must make sure that the server does not use the tables at
the same time so that there is no unwanted interaction between myisamchk and the server. See ANALYZE TABLE Syntax,
CHECK TABLE Syntax, OPTIMIZE TABLE Syntax, and REPAIR TABLE Syntax.

5.4.1. Using myisamchk for Crash Recovery
This section describes how to check for and deal with data corruption in MySQL databases. If your tables become corrupted fre-
quently, you should try to find the reason why. See What to Do If MySQL Keeps Crashing.

For an explanation of how MyISAM tables can become corrupted, see MyISAM Table Problems.

If you run mysqld with external locking disabled (which is the default as of MySQL 4.0), you cannot reliably use myisamchk to
check a table when mysqld is using the same table. If you can be certain that no one will access the tables through mysqld while
you run myisamchk, you only have to execute mysqladmin flush-tables before you start checking the tables. If you can-
not guarantee this, you must stop mysqld while you check the tables. If you run myisamchk to check tables that mysqld is up-
dating at the same time, you may get a warning that a table is corrupt even when it is not.

If the server is run with external locking enabled, you can use myisamchk to check tables at any time. In this case, if the server
tries to update a table that myisamchk is using, the server will wait for myisamchk to finish before it continues.

If you use myisamchk to repair or optimize tables, you must always ensure that the mysqld server is not using the table (this
also applies if external locking is disabled). If you do not stop mysqld, you should at least do a mysqladmin flush-tables
before you run myisamchk. Your tables may become corrupted if the server and myisamchk access the tables simultaneously.

When performing crash recovery, it is important to understand that each MyISAM table tbl_name in a database corresponds to
the three files in the database directory shown in the following table.

File Purpose

tbl_name.frm Definition (format) file

tbl_name.MYD Data file

tbl_name.MYI Index file

Each of these three file types is subject to corruption in various ways, but problems occur most often in data files and index files.

myisamchk works by creating a copy of the .MYD data file row by row. It ends the repair stage by removing the old .MYD file
and renaming the new file to the original file name. If you use --quick, myisamchk does not create a temporary .MYD file, but
instead assumes that the .MYD file is correct and generates only a new index file without touching the .MYD file. This is safe, be-
cause myisamchk automatically detects whether the .MYD file is corrupt and aborts the repair if it is. You can also specify the -
-quick option twice to myisamchk. In this case, myisamchk does not abort on some errors (such as duplicate-key errors) but
instead tries to resolve them by modifying the .MYD file. Normally the use of two --quick options is useful only if you have too
little free disk space to perform a normal repair. In this case, you should at least make a backup of the table before running myis-
amchk.

5.4.2. How to Check MyISAM Tables for Errors
To check a MyISAM table, use the following commands:

• myisamchk tbl_name

This finds 99.99% of all errors. What it cannot find is corruption that involves only the data file (which is very unusual). If you
want to check a table, you should normally run myisamchk without options or with the -s (silent) option.

• myisamchk -m tbl_name

This finds 99.999% of all errors. It first checks all index entries for errors and then reads through all rows. It calculates a check-
sum for all key values in the rows and verifies that the checksum matches the checksum for the keys in the index tree.

• myisamchk -e tbl_name

This does a complete and thorough check of all data (-e means “extended check”). It does a check-read of every key for each
row to verify that they indeed point to the correct row. This may take a long time for a large table that has many indexes. Nor-
mally, myisamchk stops after the first error it finds. If you want to obtain more information, you can add the -v (verbose) op-
tion. This causes myisamchk to keep going, up through a maximum of 20 errors.

• myisamchk -e -i tbl_name

Backup and Recovery

65

http://dev.mysql.com/doc/refman/5.1/en/analyze-table.html
http://dev.mysql.com/doc/refman/5.1/en/check-table.html
http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.1/en/repair-table.html
http://dev.mysql.com/doc/refman/5.1/en/administration-issues.html#crashing
http://dev.mysql.com/doc/refman/5.1/en/myisam-table-problems.html
http://dev.mysql.com/doc/refman/5.1/en/myisamchk-check-options.html#option_myisamchk_quick
http://dev.mysql.com/doc/refman/5.1/en/myisamchk-check-options.html#option_myisamchk_quick
http://dev.mysql.com/doc/refman/5.1/en/myisamchk-check-options.html#option_myisamchk_quick
http://dev.mysql.com/doc/refman/5.1/en/myisamchk-check-options.html#option_myisamchk_quick


This is like the previous command, but the -i option tells myisamchk to print additional statistical information.

In most cases, a simple myisamchk command with no arguments other than the table name is sufficient to check a table.

5.4.3. How to Repair Tables
The discussion in this section describes how to use myisamchk on MyISAM tables (extensions .MYI and .MYD).

You can also (and should, if possible) use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM
tables. See CHECK TABLE Syntax, and REPAIR TABLE Syntax.

Symptoms of corrupted tables include queries that abort unexpectedly and observable errors such as these:

• tbl_name.frm is locked against change

• Can't find file tbl_name.MYI (Errcode: nnn)

• Unexpected end of file

• Record file is crashed

• Got error nnn from table handler

To get more information about the error, run perror nnn, where nnn is the error number. The following example shows how to
use perror to find the meanings for the most common error numbers that indicate a problem with a table:

shell> perror 126 127 132 134 135 136 141 144 145
MySQL error code 126 = Index file is crashed
MySQL error code 127 = Record-file is crashed
MySQL error code 132 = Old database file
MySQL error code 134 = Record was already deleted (or record file crashed)
MySQL error code 135 = No more room in record file
MySQL error code 136 = No more room in index file
MySQL error code 141 = Duplicate unique key or constraint on write or update
MySQL error code 144 = Table is crashed and last repair failed
MySQL error code 145 = Table was marked as crashed and should be repaired

Note that error 135 (no more room in record file) and error 136 (no more room in index file) are not errors that can be fixed by a
simple repair. In this case, you must use ALTER TABLE to increase the MAX_ROWS and AVG_ROW_LENGTH table option values:

ALTER TABLE tbl_name MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;

If you do not know the current table option values, use SHOW CREATE TABLE.

For the other errors, you must repair your tables. myisamchk can usually detect and fix most problems that occur.

The repair process involves up to four stages, described here. Before you begin, you should change location to the database direct-
ory and check the permissions of the table files. On Unix, make sure that they are readable by the user that mysqld runs as (and to
you, because you need to access the files you are checking). If it turns out you need to modify files, they must also be writable by
you.

This section is for the cases where a table check fails (such as those described in Section 5.4.2, “How to Check MyISAM Tables for
Errors”), or you want to use the extended features that myisamchk provides.

The options that you can use for table maintenance with myisamchk are described in myisamchk.

If you are going to repair a table from the command line, you must first stop the mysqld server. Note that when you do mysql-
admin shutdown on a remote server, the mysqld server is still alive for a while after mysqladmin returns, until all state-
ment-processing has stopped and all index changes have been flushed to disk.

Stage 1: Checking your tables

Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent) option to suppress unneces-
sary information.

If the mysqld server is stopped, you should use the --update-state option to tell myisamchk to mark the table as
“checked.”

You have to repair only those tables for which myisamchk announces an error. For such tables, proceed to Stage 2.

Backup and Recovery

66

http://dev.mysql.com/doc/refman/5.1/en/check-table.html
http://dev.mysql.com/doc/refman/5.1/en/repair-table.html
http://dev.mysql.com/doc/refman/5.1/en/check-table.html
http://dev.mysql.com/doc/refman/5.1/en/repair-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/show-create-table.html
http://dev.mysql.com/doc/refman/5.1/en/myisam-ftdump.html#myisamchk
http://dev.mysql.com/doc/refman/5.1/en/myisamchk-general-options.html#option_myisamchk_update-state


If you get unexpected errors when checking (such as out of memory errors), or if myisamchk crashes, go to Stage 3.

Stage 2: Easy safe repair

First, try myisamchk -r -q tbl_name (-r -q means “quick recovery mode”). This attempts to repair the index file without
touching the data file. If the data file contains everything that it should and the delete links point at the correct locations within the
data file, this should work, and the table is fixed. Start repairing the next table. Otherwise, use the following procedure:

1. Make a backup of the data file before continuing.

2. Use myisamchk -r tbl_name (-r means “recovery mode”). This removes incorrect rows and deleted rows from the
data file and reconstructs the index file.

3. If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery mode uses an old recovery
method that handles a few cases that regular recovery mode does not (but is slower).

Note

If you want a repair operation to go much faster, you should set the values of the sort_buffer_size and
key_buffer_size variables each to about 25% of your available memory when running myisamchk.

If you get unexpected errors when repairing (such as out of memory errors), or if myisamchk crashes, go to Stage 3.

Stage 3: Difficult repair

You should reach this stage only if the first 16KB block in the index file is destroyed or contains incorrect information, or if the in-
dex file is missing. In this case, it is necessary to create a new index file. Do so as follows:

1. Move the data file to a safe place.

2. Use the table description file to create new (empty) data and index files:

shell> mysql db_name
mysql> SET autocommit=1;
mysql> TRUNCATE TABLE tbl_name;
mysql> quit

3. Copy the old data file back onto the newly created data file. (Do not just move the old file back onto the new file. You want to
retain a copy in case something goes wrong.)

Important

If you are using replication, you should stop it prior to performing the above procedure, since it involves file system
operations, and these are not logged by MySQL.

Go back to Stage 2. myisamchk -r -q should work. (This should not be an endless loop.)

You can also use the REPAIR TABLE tbl_name USE_FRM SQL statement, which performs the whole procedure automatic-
ally. There is also no possibility of unwanted interaction between a utility and the server, because the server does all the work when
you use REPAIR TABLE. See REPAIR TABLE Syntax.

Stage 4: Very difficult repair

You should reach this stage only if the .frm description file has also crashed. That should never happen, because the description
file is not changed after the table is created:

1. Restore the description file from a backup and go back to Stage 3. You can also restore the index file and go back to Stage 2.
In the latter case, you should start with myisamchk -r.

2. If you do not have a backup but know exactly how the table was created, create a copy of the table in another database. Re-
move the new data file, and then move the .frm description and .MYI index files from the other database to your crashed
database. This gives you new description and index files, but leaves the .MYD data file alone. Go back to Stage 2 and attempt
to reconstruct the index file.

5.4.4. Table Optimization

Backup and Recovery

67

http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_sort_buffer_size
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_key_buffer_size
http://dev.mysql.com/doc/refman/5.1/en/repair-table.html
http://dev.mysql.com/doc/refman/5.1/en/repair-table.html


To coalesce fragmented rows and eliminate wasted space that results from deleting or updating rows, run myisamchk in recovery
mode:

shell> myisamchk -r tbl_name

You can optimize a table in the same way by using the OPTIMIZE TABLE SQL statement. OPTIMIZE TABLE does a table re-
pair and a key analysis, and also sorts the index tree so that key lookups are faster. There is also no possibility of unwanted interac-
tion between a utility and the server, because the server does all the work when you use OPTIMIZE TABLE. See OPTIMIZE
TABLE Syntax.

myisamchk has a number of other options that you can use to improve the performance of a table:

• --analyze, -a

• --sort-index, -S

• --sort-records=index_num, -R index_num

For a full description of all available options, see myisamchk.

5.4.5. Getting Information About a Table
To obtain a description of a table or statistics about it, use the commands shown here. We explain some of the information in more
detail later.

• myisamchk -d tbl_name

Runs myisamchk in “describe mode” to produce a description of your table. If you start the MySQL server with external lock-
ing disabled, myisamchk may report an error for a table that is updated while it runs. However, because myisamchk does
not change the table in describe mode, there is no risk of destroying data.

• myisamchk -d -v tbl_name

Adding -v runs myisamchk in verbose mode so that it produces more information about what it is doing.

• myisamchk -eis tbl_name

Shows only the most important information from a table. This operation is slow because it must read the entire table.

• myisamchk -eiv tbl_name

This is like -eis, but tells you what is being done.

The tbl_name argument can be either the name of a MyISAM table or the name of its index file, as described in myisamchk.
Multiple tbl_name arguments can be given.

Sample output for some of these commands follows. They are based on a table with these data and index file sizes:

-rw-rw-r-- 1 monty tcx 317235748 Jan 12 17:30 company.MYD
-rw-rw-r-- 1 davida tcx 96482304 Jan 12 18:35 company.MYI

Example of myisamchk -d output:

MyISAM file: company.MYI
Record format: Fixed length
Data records: 1403698 Deleted blocks: 0
Recordlength: 226
table description:
Key Start Len Index Type
1 2 8 unique double
2 15 10 multip. text packed stripped
3 219 8 multip. double
4 63 10 multip. text packed stripped
5 167 2 multip. unsigned short
6 177 4 multip. unsigned long
7 155 4 multip. text
8 138 4 multip. unsigned long
9 177 4 multip. unsigned long

193 1 text

Backup and Recovery

68

http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.1/en/myisamchk-repair-options.html#option_myisamchk_analyze
http://dev.mysql.com/doc/refman/5.1/en/myisamchk-repair-options.html#option_myisamchk_sort-index
http://dev.mysql.com/doc/refman/5.1/en/myisamchk-repair-options.html#option_myisamchk_sort-records
http://dev.mysql.com/doc/refman/5.1/en/myisam-ftdump.html#myisamchk
http://dev.mysql.com/doc/refman/5.1/en/myisam-ftdump.html#myisamchk


Example of myisamchk -d -v output:

MyISAM file: company
Record format: Fixed length
File-version: 1
Creation time: 1999-10-30 12:12:51
Recover time: 1999-10-31 19:13:01
Status: checked
Data records: 1403698 Deleted blocks: 0
Datafile parts: 1403698 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 3
Max datafile length: 3791650815 Max keyfile length: 4294967294
Recordlength: 226
table description:
Key Start Len Index Type Rec/key Root Blocksize
1 2 8 unique double 1 15845376 1024
2 15 10 multip. text packed stripped 2 25062400 1024
3 219 8 multip. double 73 40907776 1024
4 63 10 multip. text packed stripped 5 48097280 1024
5 167 2 multip. unsigned short 4840 55200768 1024
6 177 4 multip. unsigned long 1346 65145856 1024
7 155 4 multip. text 4995 75090944 1024
8 138 4 multip. unsigned long 87 85036032 1024
9 177 4 multip. unsigned long 178 96481280 1024

193 1 text

Example of myisamchk -eis output:

Checking MyISAM file: company
Key: 1: Keyblocks used: 97% Packed: 0% Max levels: 4
Key: 2: Keyblocks used: 98% Packed: 50% Max levels: 4
Key: 3: Keyblocks used: 97% Packed: 0% Max levels: 4
Key: 4: Keyblocks used: 99% Packed: 60% Max levels: 3
Key: 5: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 6: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 7: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 8: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 9: Keyblocks used: 98% Packed: 0% Max levels: 4
Total: Keyblocks used: 98% Packed: 17%
Records: 1403698 M.recordlength: 226
Packed: 0%
Recordspace used: 100% Empty space: 0%
Blocks/Record: 1.00
Record blocks: 1403698 Delete blocks: 0
Recorddata: 317235748 Deleted data: 0
Lost space: 0 Linkdata: 0
User time 1626.51, System time 232.36
Maximum resident set size 0, Integral resident set size 0
Non physical pagefaults 0, Physical pagefaults 627, Swaps 0
Blocks in 0 out 0, Messages in 0 out 0, Signals 0
Voluntary context switches 639, Involuntary context switches 28966

Example of myisamchk -eiv output:

Checking MyISAM file: company
Data records: 1403698 Deleted blocks: 0
- check file-size
- check delete-chain
block_size 1024:
index 1:
index 2:
index 3:
index 4:
index 5:
index 6:
index 7:
index 8:
index 9:
No recordlinks
- check index reference
- check data record references index: 1
Key: 1: Keyblocks used: 97% Packed: 0% Max levels: 4
- check data record references index: 2
Key: 2: Keyblocks used: 98% Packed: 50% Max levels: 4
- check data record references index: 3
Key: 3: Keyblocks used: 97% Packed: 0% Max levels: 4
- check data record references index: 4
Key: 4: Keyblocks used: 99% Packed: 60% Max levels: 3
- check data record references index: 5
Key: 5: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 6
Key: 6: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 7
Key: 7: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 8
Key: 8: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 9
Key: 9: Keyblocks used: 98% Packed: 0% Max levels: 4
Total: Keyblocks used: 9% Packed: 17%
- check records and index references
*** LOTS OF ROW NUMBERS DELETED ***
Records: 1403698 M.recordlength: 226 Packed: 0%

Backup and Recovery

69



Recordspace used: 100% Empty space: 0% Blocks/Record: 1.00
Record blocks: 1403698 Delete blocks: 0
Recorddata: 317235748 Deleted data: 0
Lost space: 0 Linkdata: 0
User time 1639.63, System time 251.61
Maximum resident set size 0, Integral resident set size 0
Non physical pagefaults 0, Physical pagefaults 10580, Swaps 0
Blocks in 4 out 0, Messages in 0 out 0, Signals 0
Voluntary context switches 10604, Involuntary context switches 122798

Explanations for the types of information myisamchk produces are given here. “Keyfile” refers to the index file. “Record” and
“row” are synonymous.

• MyISAM file

Name of the MyISAM (index) file.

• File-version

Version of MyISAM format. Currently always 2.

• Creation time

When the data file was created.

• Recover time

When the index/data file was last reconstructed.

• Data records

How many rows are in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this space. See Section 5.4.4,
“Table Optimization”.

• Datafile parts

For dynamic-row format, this indicates how many data blocks there are. For an optimized table without fragmented rows, this is
the same as Data records.

• Deleted data

How many bytes of unreclaimed deleted data there are. You can optimize your table to minimize this space. See Section 5.4.4,
“Table Optimization”.

• Datafile pointer

The size of the data file pointer, in bytes. It is usually 2, 3, 4, or 5 bytes. Most tables manage with 2 bytes, but this cannot be
controlled from MySQL yet. For fixed tables, this is a row address. For dynamic tables, this is a byte address.

• Keyfile pointer

The size of the index file pointer, in bytes. It is usually 1, 2, or 3 bytes. Most tables manage with 2 bytes, but this is calculated
automatically by MySQL. It is always a block address.

• Max datafile length

How long the table data file can become, in bytes.

• Max keyfile length

How long the table index file can become, in bytes.

• Recordlength

How much space each row takes, in bytes.

• Record format

The format used to store table rows. The preceding examples use Fixed length. Other possible values are Compressed

Backup and Recovery

70



and Packed.

• table description

A list of all keys in the table. For each key, myisamchk displays some low-level information:

• Key

This key's number.

• Start

Where in the row this portion of the index starts.

• Len

How long this portion of the index is. For packed numbers, this should always be the full length of the column. For strings,
it may be shorter than the full length of the indexed column, because you can index a prefix of a string column.

• Index

Whether a key value can exist multiple times in the index. Possible values are unique or multip. (multiple).

• Type

What data type this portion of the index has. This is a MyISAM data type with the possible values packed, stripped, or
empty.

• Root

Address of the root index block.

• Blocksize

The size of each index block. By default this is 1024, but the value may be changed at compile time when MySQL is built
from source.

• Rec/key

This is a statistical value used by the optimizer. It tells how many rows there are per value for this index. A unique index al-
ways has a value of 1. This may be updated after a table is loaded (or greatly changed) with myisamchk -a. If this is not
updated at all, a default value of 30 is given.

For the table shown in the examples, there are two table description lines for the ninth index. This indicates that it is a
multiple-part index with two parts.

• Keyblocks used

What percentage of the keyblocks are used. When a table has just been reorganized with myisamchk, as for the table in the
examples, the values are very high (very near theoretical maximum).

• Packed

MySQL tries to pack key values that have a common suffix. This can only be used for indexes on CHAR and VARCHAR
columns. For long indexed strings that have similar leftmost parts, this can significantly reduce the space used. In the third of
the preceding examples, the fourth key is 10 characters long and a 60% reduction in space is achieved.

• Max levels

How deep the B-tree for this key is. Large tables with long key values get high values.

• Records

How many rows are in the table.

• M.recordlength

The average row length. This is the exact row length for tables with fixed-length rows, because all rows have the same length.

• Packed

MySQL strips spaces from the end of strings. The Packed value indicates the percentage of savings achieved by doing this.

Backup and Recovery

71

http://dev.mysql.com/doc/refman/5.1/en/char.html
http://dev.mysql.com/doc/refman/5.1/en/char.html


• Recordspace used

What percentage of the data file is used.

• Empty space

What percentage of the data file is unused.

• Blocks/Record

Average number of blocks per row (that is, how many links a fragmented row is composed of). This is always 1.0 for fixed-
format tables. This value should stay as close to 1.0 as possible. If it gets too large, you can reorganize the table. See Sec-
tion 5.4.4, “Table Optimization”.

• Recordblocks

How many blocks (links) are used. For fixed-format tables, this is the same as the number of rows.

• Deleteblocks

How many blocks (links) are deleted.

• Recorddata

How many bytes in the data file are used.

• Deleted data

How many bytes in the data file are deleted (unused).

• Lost space

If a row is updated to a shorter length, some space is lost. This is the sum of all such losses, in bytes.

• Linkdata

When the dynamic table format is used, row fragments are linked with pointers (4 to 7 bytes each). Linkdata is the sum of
the amount of storage used by all such pointers.

If a table has been compressed with myisampack, myisamchk -d prints additional information about each table column. See
myisampack, for an example of this information and a description of what it means.

5.4.6. Setting Up a Table Maintenance Schedule
It is a good idea to perform table checks on a regular basis rather than waiting for problems to occur. One way to check and repair
MyISAM tables is with the CHECK TABLE and REPAIR TABLE statements. See CHECK TABLE Syntax, and REPAIR TABLE
Syntax.

Another way to check tables is to use myisamchk. For maintenance purposes, you can use myisamchk -s. The -s option
(short for --silent) causes myisamchk to run in silent mode, printing messages only when errors occur.

It is also a good idea to enable automatic MyISAM table checking. For example, whenever the machine has done a restart in the
middle of an update, you usually need to check each table that could have been affected before it is used further. (These are
“expected crashed tables.”) To check MyISAM tables automatically, start the server with the --myisam-recover option. See
Server Command Options.

You should also check your tables regularly during normal system operation. For example, you can run a cron job to check im-
portant tables once a week, using a line like this in a crontab file:

35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI

This prints out information about crashed tables so that you can examine and repair them as necessary.

We recommend that to start with, you execute myisamchk -s each night on all tables that have been updated during the last 24
hours. As you see that problems occur infrequently, you can back off the checking frequency to once a week or so.

Normally, MySQL tables need little maintenance. If you are performing many updates to MyISAM tables with dynamic-sized rows
(tables with VARCHAR, BLOB, or TEXT columns) or have tables with many deleted rows you may want to defragment/reclaim
space from the tables from time to time. You can do this by using OPTIMIZE TABLE on the tables in question. Alternatively, if

Backup and Recovery

72

http://dev.mysql.com/doc/refman/5.1/en/myisamlog.html#myisampack
http://dev.mysql.com/doc/refman/5.1/en/check-table.html
http://dev.mysql.com/doc/refman/5.1/en/repair-table.html
http://dev.mysql.com/doc/refman/5.1/en/check-table.html
http://dev.mysql.com/doc/refman/5.1/en/repair-table.html
http://dev.mysql.com/doc/refman/5.1/en/repair-table.html
http://dev.mysql.com/doc/refman/5.1/en/myisamchk-description.html#option_myisamchk_silent
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_myisam-recover
http://dev.mysql.com/doc/refman/5.1/en/server-options.html
http://dev.mysql.com/doc/refman/5.1/en/char.html
http://dev.mysql.com/doc/refman/5.1/en/blob.html
http://dev.mysql.com/doc/refman/5.1/en/blob.html
http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html


you can stop the mysqld server for a while, change location into the data directory and use this command while the server is
stopped:

shell> myisamchk -r -s --sort-index --sort_buffer_size=16M */*.MYI

Backup and Recovery

73



Chapter 6. Frequently Asked Questions about Security
Questions

• 6.1: Does MySQL 5.1 have built-in authentication against LDAP directories?

• 6.2: Does MySQL 5.1 include support for Roles Based Access Control (RBAC)?

• 6.3: Is SSL support be built into MySQL binaries, or must I recompile the binary myself to enable it?

• 6.4: Does MySQL 5.1 have native support for SSL?

• 6.5: Where can I find documentation that addresses security issues for MySQL?

Questions and Answers

6.1: Does MySQL 5.1 have built-in authentication against LDAP directories?

No. Support for external authentication methods is on the MySQL roadmap as a “rolling feature”, which means that we plan to im-
plement it in the future, but we have not yet determined when this will be done.

6.2: Does MySQL 5.1 include support for Roles Based Access Control (RBAC)?

No. Support for roles is on the MySQL roadmap as a “rolling feature”, which means that we plan to implement it in the future, but
we have not yet determined when this will be done.

6.3: Is SSL support be built into MySQL binaries, or must I recompile the binary myself to enable it?

Most 5.1 binaries have SSL enabled for client-server connections that are secured, authenticated, or both. However, the YaSSL lib-
rary currently does not compile on all platforms. See Section 4.7, “Using SSL for Secure Connections”, for a complete listing of
supported and unsupported platforms.

6.4: Does MySQL 5.1 have native support for SSL?

Most 5.1 binaries have support for SSL connections between the client and server. We can't currently build with the new YaSSL
library everywhere, as it's still quite new and does not compile on all platforms yet. See Section 4.7, “Using SSL for Secure Con-
nections”.

You can also tunnel a connection via SSH, if (for instance) if the client application doesn't support SSL connections. For an ex-
ample, see Section 4.8, “Connecting to MySQL Remotely from Windows with SSH”.

6.5: Where can I find documentation that addresses security issues for MySQL?

The best place to start is Chapter 1, General Security Issues.

Other portions of the MySQL Documentation which you may find useful with regard to specific security concerns include the fol-
lowing:

• Section 1.1, “General Security Guidelines”.

• Section 1.2, “Making MySQL Secure Against Attackers”.

• How to Reset the Root Password.

• Section 1.5, “How to Run MySQL as a Normal User”.

• User-Defined Function Security Precautions.

• Section 1.3, “Security-Related mysqld Options”.

• Section 1.4, “Security Issues with LOAD DATA LOCAL”.

• Chapter 2, Post-Installation Setup and Testing.

• SELinux Notes.

• Section 4.7.1, “Basic SSL Concepts”.

74

http://dev.mysql.com/doc/refman/5.1/en/administration-issues.html#resetting-permissions
http://dev.mysql.com/doc/refman/5.1/en/adding-udf.html#udf-security
http://dev.mysql.com/doc/refman/5.1/en/linux.html#selinux


MySQL Enterprise
The MySQL Enterprise Monitor enforces best practices for maximizing the security of your servers. For
more information see http://www.mysql.com/products/enterprise/advisors.html.

Frequently Asked Questions about Security

75

advisors.html

	Security in MySQL
	Preface
	Chapter 1. General Security Issues
	1.1. General Security Guidelines
	1.2. Making MySQL Secure Against Attackers
	1.3. Security-Related mysqld Options
	1.4. Security Issues with LOAD DATA LOCAL
	1.5. How to Run MySQL as a Normal User

	Chapter 2. Post-Installation Setup and Testing
	2.1. Windows Post-Installation Procedures
	2.2. Unix Post-Installation Procedures
	2.2.1. Problems Running mysql_install_db
	2.2.2. Starting and Stopping MySQL Automatically
	2.2.3. Starting and Troubleshooting the MySQL Server

	2.3. Securing the Initial MySQL Accounts

	Chapter 3. The MySQL Access Privilege System
	3.1. Privileges Provided by MySQL
	3.2. Privilege System Grant Tables
	3.3. Specifying Account Names
	3.4. Access Control, Stage 1: Connection Verification
	3.5. Access Control, Stage 2: Request Verification
	3.6. When Privilege Changes Take Effect
	3.7. Causes of Access-Denied Errors

	Chapter 4. MySQL User Account Management
	4.1. User Names and Passwords
	4.2. Adding User Accounts
	4.3. Removing User Accounts
	4.4. Limiting Account Resources
	4.5. Assigning Account Passwords
	4.6. Password Security in MySQL
	4.6.1. Administrator Guidelines for Password Security
	4.6.2. End-User Guidelines for Password Security
	4.6.3. Password Hashing in MySQL
	4.6.4. Implications of Password Hashing Changes in MySQL 4.1 for Application Programs

	4.7. Using SSL for Secure Connections
	4.7.1. Basic SSL Concepts
	4.7.2. Using SSL Connections
	4.7.3. SSL Command Options
	4.7.4. Setting Up SSL Certificates for MySQL

	4.8. Connecting to MySQL Remotely from Windows with SSH
	4.9. Auditing MySQL Account Activity

	Chapter 5. Backup and Recovery
	5.1. Database Backups
	5.2. Example Backup and Recovery Strategy
	5.2.1. Backup Policy
	5.2.2. Using Backups for Recovery
	5.2.3. Backup Strategy Summary

	5.3. Point-in-Time Recovery
	5.3.1. Specifying Times for Recovery
	5.3.2. Specifying Positions for Recovery

	5.4. Table Maintenance and Crash Recovery
	5.4.1. Using myisamchk for Crash Recovery
	5.4.2. How to Check MyISAM Tables for Errors
	5.4.3. How to Repair Tables
	5.4.4. Table Optimization
	5.4.5. Getting Information About a Table
	5.4.6. Setting Up a Table Maintenance Schedule


	Chapter 6. Frequently Asked Questions about Security

